A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos

Robert C. Akkers, Simon J. van Heeringen, Ulrike G. Jacobi, Eva M. Janssen-Megens, Kees Jan Françoijs, Hendrik G. Stunnenberg, Gert Jan C. Veenstra

Research output: Contribution to journalArticlepeer-review

184 Citations (Scopus)

Abstract

Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryogenesis. Here, we report on the epigenetic and transcriptome genome-wide maps of gastrula-stage Xenopus tropicalis embryos using massive parallel sequencing of cDNA (RNA-seq) and DNA obtained by chromatin immunoprecipitation (ChIP-seq) of histone H3 K4 and K27 trimethylation and RNA Polymerase II (RNAPII). These maps identify promoters and transcribed regions. Strikingly, genomic regions featuring opposing histone modifications are mostly transcribed, reflecting spatially regulated expression rather than bivalency as determined by expression profile analyses, sequential ChIP, and ChIP-seq on dissected embryos. Spatial differences in H3K27me3 deposition are predictive of localized gene expression. Moreover, the appearance of H3K4me3 coincides with zygotic gene activation, whereas H3K27me3 is predominantly deposited upon subsequent spatial restriction or repression of transcriptional regulators. These results reveal a hierarchy in the spatial control of zygotic gene activation.

Original languageEnglish
Pages (from-to)425-434
Number of pages10
JournalDevelopmental Cell
Volume17
Issue number3
DOIs
Publication statusPublished - 15 Sept 2009
Externally publishedYes

Keywords

  • DEVBIO
  • DNA
  • SYSBIO

Fingerprint

Dive into the research topics of 'A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos'. Together they form a unique fingerprint.

Cite this