Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum solv uses the calvin-benson-bassham cycle for Carbon Dioxide Fixation

Ahmad F. Khadem, Arjan Pol, Adam Wieczorek, Seyed S. Mohammadi, Kees Jan Francoijs, Henk G. Stunnenberg, Mike S.M. Jetten, Huub J.M. Op den Camp

Research output: Contribution to journalArticlepeer-review

135 Citations (Scopus)

Abstract

Genome data of the extreme acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum strain SolV indicated the ability of autotrophic growth. This was further validated by transcriptome analysis, which showed that all genes required for a functional Calvin-Benson-Bassham (CBB) cycle were transcribed. Experiments with 13CH 4 or 13CO 2 in batch and chemostat cultures demonstrated that CO 2 is the sole carbon source for growth of strain SolV. In the presence of CH4, CO 2 concentrations in the headspace below 1% (vol/vol) were growth limiting, and no growth was observed when CO 2 concentrations were below 0.3% (vol/vol). The activity of the key enzyme of the CBB cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), measured with a 13C stable-isotope method was about 70 nmol CO 2 fixed min -1 mg of protein -1. An immune reaction with antibody against the large subunit of RuBisCO on Western blots was found only in the supernatant fractions of cell extracts. The apparent native mass of the RuBisCO complex in strain SolV was about 482 kDa, probably consisting of 8 large (53-kDa) and 8 small (16-kDa) subunits. Based on phylogenetic analysis of the corresponding RuBisCO gene, we postulate that RuBisCO of the verrucomicrobial methanotrophs represents a new type of form I RuBisCO.

Original languageEnglish
Pages (from-to)4438-4446
Number of pages9
JournalJournal of Bacteriology
Volume193
Issue number17
DOIs
Publication statusPublished - Sept 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum solv uses the calvin-benson-bassham cycle for Carbon Dioxide Fixation'. Together they form a unique fingerprint.

Cite this