TY - JOUR
T1 - Dot1 binding induces chromatin rearrangements by histone methylation-dependent and -independent mechanisms
AU - Stulemeijer, Iris J.E.
AU - Pike, Brietta L.
AU - Faber, Alex W.
AU - Verzijlbergen, Kitty F.
AU - Van Welsem, Tibor
AU - Frederiks, Floor
AU - Lenstra, Tineke L.
AU - Holstege, Frank C.P.
AU - Gasser, Susan M.
AU - Van Leeuwen, Fred
N1 - Funding Information:
We thank M. Krijnen for help with construction of deletion mutants; F. Neumann for help with the localization studies; D. Gottschling, X. Bi, B. Cairns, C. Boone, H.T.M. Timmers, Y. Zhang, S. Fields, J. Singer and B. Eisenman for plasmids and strains; M. Hauptmann for help with statistics; and members of the van Leeuwen lab for helpful discussions and critical reading of the manuscript. This work was supported by the EU 6th framework program (NOE ‘The Epigenome’ LSHG-CT-2004-503433), by The Netherlands Organisation for Scientific Research (NWO), the Netherlands Genomics Initiative, and a NWO talent stipendium (021.002.035) to TLL. The Gasser laboratory is supported by the Novartis Research Foundation and a fellowship from the Human Frontiers Science Program to BLP.
PY - 2011
Y1 - 2011
N2 - Background: Methylation of histone H3 lysine 79 (H3K79) by Dot1 is highly conserved among species and has been associated with both gene repression and activation. To eliminate indirect effects and examine the direct consequences of Dot1 binding and H3K79 methylation, we investigated the effects of targeting Dot1 to different positions in the yeast genome. Results: Targeting Dot1 did not activate transcription at a euchromatic locus. However, chromatin-bound Dot1 derepressed heterochromatin-mediated gene silencing over a considerable distance. Unexpectedly, Dot1-mediated derepression was established by both a H3K79 methylation-dependent and a methylation-independent mechanism; the latter required the histone acetyltransferase Gcn5. By monitoring the localization of a fluorescently tagged telomere in living cells, we found that the targeting of Dot1, but not its methylation activity, led to the release of a telomere from the repressive environment at the nuclear periphery. This probably contributes to the activity-independent derepression effect of Dot1. Conclusions: Targeting of Dot1 promoted gene expression by antagonizing gene repression through both histone methylation and chromatin relocalization. Our findings show that binding of Dot1 to chromatin can positively affect local gene expression by chromatin rearrangements over a considerable distance.
AB - Background: Methylation of histone H3 lysine 79 (H3K79) by Dot1 is highly conserved among species and has been associated with both gene repression and activation. To eliminate indirect effects and examine the direct consequences of Dot1 binding and H3K79 methylation, we investigated the effects of targeting Dot1 to different positions in the yeast genome. Results: Targeting Dot1 did not activate transcription at a euchromatic locus. However, chromatin-bound Dot1 derepressed heterochromatin-mediated gene silencing over a considerable distance. Unexpectedly, Dot1-mediated derepression was established by both a H3K79 methylation-dependent and a methylation-independent mechanism; the latter required the histone acetyltransferase Gcn5. By monitoring the localization of a fluorescently tagged telomere in living cells, we found that the targeting of Dot1, but not its methylation activity, led to the release of a telomere from the repressive environment at the nuclear periphery. This probably contributes to the activity-independent derepression effect of Dot1. Conclusions: Targeting of Dot1 promoted gene expression by antagonizing gene repression through both histone methylation and chromatin relocalization. Our findings show that binding of Dot1 to chromatin can positively affect local gene expression by chromatin rearrangements over a considerable distance.
UR - http://www.scopus.com/inward/record.url?scp=79551545956&partnerID=8YFLogxK
U2 - 10.1186/1756-8935-4-2
DO - 10.1186/1756-8935-4-2
M3 - Article
AN - SCOPUS:79551545956
SN - 1756-8935
VL - 4
JO - Epigenetics and Chromatin
JF - Epigenetics and Chromatin
IS - 1
M1 - 2
ER -