Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia

Diana Schotte, Ellen A M Lange-Turenhout, Dominique J P M Stumpel, Ronald W Stam, Jessica G C A M Buijs-Gladdines, Jules P P Meijerink, Rob Pieters, Monique L Den Boer

Research output: Contribution to journalArticlepeer-review

84 Citations (Scopus)

Abstract

BACKGROUND: Deregulation of microRNA may contribute to hematopoietic malignancies. MicroRNA-196b (miR-196b) is highly expressed in MLL-rearranged leukemia and has been shown to be activated by MLL and MLL-fusion genes.

DESIGN AND METHODS: In order to determine whether high expression of miR-196b is restricted to MLL-rearranged leukemia, we used quantitative stem-loop reverse transcriptase polymerase chain reaction to measure the expression of this microRNA in 72 selected cases of pediatric acute lymphoblastic leukemia i.e. MLL-rearranged and non-MLL-rearranged precursor B-cell and T-cell acute lymphoblastic leukemias. We also determined the expression of HOXA-genes flanking miR-196 by microarray and real-time quantitative polymerase chain reaction. Furthermore, we used CpG island-arrays to explore the DNA methylation status of miR-196b and HOXA.

RESULTS: We demonstrated that high expression of miR-196b is not unique to MLL-rearranged acute lymphoblastic leukemia but also occurs in patients with T-cell acute lymphoblastic leukemia patients carrying CALM-AF10, SET-NUP214 and inversion of chromosome 7. Like MLL-rearrangements, these abnormalities have been functionally linked with up-regulation of HOXA. In correspondence, miR-196b expression in these patients correlated strongly with the levels of HOXA family genes (Spearman's correlation coefficient ≥ 0.7; P≤0.005). Since miR-196b is encoded on the HOXA cluster, these data suggest co-activation of miR-196b and HOXA genes in acute lymphoblastic leukemia. Up-regulation of miR-196b coincides with reduced DNA methylation at CpG islands in the promoter regions of miR-196b and the entire HOXA cluster in MLL-rearranged cases compared to in cases of non-MLL precursor B-cell acute lymphoblastic leukemia and normal bone marrow (P<0.05), suggesting an epigenetic origin for miR-196b over-expression. Although patients with MLL-rearranged acute lymphoblastic leukemia are highly resistant to prednisolone and L-asparaginase, this resistance was not attributed to miR-196b expression.

CONCLUSIONS: High expression of miR-196b is not exclusively MLL-driven but can also be found in other types of leukemia with aberrant activation of HOXA genes. Since miR-196b has been shown by others to exert oncogenic activity in bone marrow progenitor cells, the findings of the present study imply a potential role for miR-196b in the underlying biology of all HOXA-activated leukemias.

Original languageEnglish
Pages (from-to)1675-82
Number of pages8
JournalHaematologica
Volume95
Issue number10
DOIs
Publication statusPublished - Oct 2010
Externally publishedYes

Keywords

  • Child
  • Epigenomics
  • Gene Expression Regulation, Leukemic
  • Gene Rearrangement
  • Homeodomain Proteins/genetics
  • Humans
  • MicroRNAs/biosynthesis
  • Myeloid-Lymphoid Leukemia Protein/genetics
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology

Fingerprint

Dive into the research topics of 'Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia'. Together they form a unique fingerprint.

Cite this