Abstract
With aging, tryptophan metabolism is affected. Tryptophan has a crucial role in the induction of immune tolerance and the maintenance of gut microbiota. We, therefore, studied the effect of dietary tryptophan restriction in young wild-type (WT) mice (118-wk life span) and in DNA-repair deficient, premature-aged (Ercc1-/Δ7 ) mice (20-wk life span). First, we found that the effect of aging on the distribution of B and T cells in bone marrow (BM) and in the periphery of 16-wk-old Ercc1-/Δ7 mice was comparable to that in 18-mo-old WT mice. Dietary tryptophan restriction caused an arrest of B cell development in the BM, accompanied by diminished B cell frequencies in the periphery. In general, old Ercc1-/Δ7 mice showed similar responses to tryptophan restriction compared with young WT mice, indicative of age-independent effects. Dietary tryptophan restriction increased microbial diversity and made the gut microbiota composition of old Ercc1-/Δ7 mice more similar to that of young WT mice. The decreased abundances of Alistipes and Akkermansia spp. after dietary tryptophan restriction correlated significantly with decreased B cell precursor numbers. In conclusion, we report that dietary tryptophan restriction arrests B cell development and concomitantly changes gut microbiota composition. Our study suggests a beneficial interplay between dietary tryptophan, B cell development, and gut microbial composition on several aspects of age-induced changes.
Original language | English |
---|---|
Pages (from-to) | 811-821 |
Number of pages | 11 |
Journal | Journal of leukocyte biology |
Volume | 101 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2017 |
Externally published | Yes |
Keywords
- Aging, Premature/immunology
- Animals
- B-Lymphocytes/cytology
- Bacteria/metabolism
- Bone Marrow/metabolism
- DNA-Binding Proteins/metabolism
- Diet
- Endonucleases/metabolism
- Female
- Gastrointestinal Tract/microbiology
- Immunologic Memory
- Lymph Nodes/cytology
- Lymphocyte Count
- Mice, Inbred C57BL
- Microbiota
- Spleen/cytology
- T-Lymphocytes, Regulatory/metabolism
- Tryptophan/metabolism