TY - JOUR
T1 - Mapping of a FEB3 homologous febrile seizure locus on mouse chromosome 2 containing candidate genes Scn1a and Scn3a
AU - Hessel, Ellen V.S.
AU - van Lith, Hein A.
AU - Wolterink-Donselaar, Inge G.
AU - de Wit, Marina
AU - Groot Koerkamp, Marian J.A.
AU - Holstege, Frank C.P.
AU - Kas, Martien J.H.
AU - Fernandes, Cathy
AU - de Graan, Pierre N.E.
N1 - Publisher Copyright:
© 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
PY - 2016/12/1
Y1 - 2016/12/1
N2 - Febrile seizures (FS) are the most common seizure type in children. Recurrent FS are a risk factor for developing temporal lobe epilepsy later in life and are known to have a strong genetic component. Experimental FS (eFS) can be elicited in mice by warm-air induced hyperthermia. We used this model to screen the chromosome substitution strain (CSS) panel derived from C57BL/6J and A/J for FS susceptibility and identified C57BL/6J-Chr2A/NaJ (CSS2), as the strain with the strongest FS susceptibility phenotype. The aim of this study was to map FS susceptibility loci and select candidate genes on mouse chromosome 2. We generated an F2 population by intercrossing the hybrids (F1) that were derived from CSS2 and C57BL/6J mice. All CSS2-F2 individuals were genotyped and phenotyped for eFS susceptibility, and QTL analysis was performed. Candidate gene selection was based on bioinformatics analyses and differential brain expression between CSS2 and C57BL/6J strains determined by microarray analysis. Genetic mapping of the eFS susceptibility trait identified two significant loci: FS-QTL2a (LOD-score 3.6) and FS-QTL2b (LOD-score 6.2). FS-QTL2a contained 44 genes expressed in the brain at post natal day 14. Four of these (Arl6ip6, Cytip, Fmnl2 Ifih1) contained a non-synonymous SNP comparing CSS2 and C57BL/6J, six genes (March7, Nr4a2, Gpd2, Grb14, Scn1a, Scn3a) were differentially expressed between these strains. A region within FS-QTL2a is homologous to the human FEB3 locus. The fact that we identify mouse FS-QTL2a with high FEB3 homology is strong support for the validity of the eFS mouse model to study genetics of human FS.
AB - Febrile seizures (FS) are the most common seizure type in children. Recurrent FS are a risk factor for developing temporal lobe epilepsy later in life and are known to have a strong genetic component. Experimental FS (eFS) can be elicited in mice by warm-air induced hyperthermia. We used this model to screen the chromosome substitution strain (CSS) panel derived from C57BL/6J and A/J for FS susceptibility and identified C57BL/6J-Chr2A/NaJ (CSS2), as the strain with the strongest FS susceptibility phenotype. The aim of this study was to map FS susceptibility loci and select candidate genes on mouse chromosome 2. We generated an F2 population by intercrossing the hybrids (F1) that were derived from CSS2 and C57BL/6J mice. All CSS2-F2 individuals were genotyped and phenotyped for eFS susceptibility, and QTL analysis was performed. Candidate gene selection was based on bioinformatics analyses and differential brain expression between CSS2 and C57BL/6J strains determined by microarray analysis. Genetic mapping of the eFS susceptibility trait identified two significant loci: FS-QTL2a (LOD-score 3.6) and FS-QTL2b (LOD-score 6.2). FS-QTL2a contained 44 genes expressed in the brain at post natal day 14. Four of these (Arl6ip6, Cytip, Fmnl2 Ifih1) contained a non-synonymous SNP comparing CSS2 and C57BL/6J, six genes (March7, Nr4a2, Gpd2, Grb14, Scn1a, Scn3a) were differentially expressed between these strains. A region within FS-QTL2a is homologous to the human FEB3 locus. The fact that we identify mouse FS-QTL2a with high FEB3 homology is strong support for the validity of the eFS mouse model to study genetics of human FS.
KW - chromosome substitution strain
KW - hyperthermia
KW - quantitatve trait loci
KW - temporal lobe epilepsy
UR - http://www.scopus.com/inward/record.url?scp=85000644805&partnerID=8YFLogxK
U2 - 10.1111/ejn.13420
DO - 10.1111/ejn.13420
M3 - Article
C2 - 27690330
AN - SCOPUS:85000644805
SN - 0953-816X
VL - 44
SP - 2950
EP - 2957
JO - European Journal of Neuroscience
JF - European Journal of Neuroscience
IS - 11
ER -