TY - JOUR
T1 - Metachromatic leukodystrophy and transplantation
T2 - remyelination, no cross-correction
AU - Wolf, Nicole I.
AU - Breur, Marjolein
AU - Plug, Bonnie
AU - Beerepoot, Shanice
AU - Westerveld, Aimee S.R.
AU - van Rappard, Diane F.
AU - de Vries, Sharon I.
AU - Kole, Maarten H.P.
AU - Vanderver, Adeline
AU - van der Knaap, Marjo S.
AU - Lindemans, Caroline A.
AU - van Hasselt, Peter M.
AU - Boelens, Jaap J.
AU - Matzner, Ulrich
AU - Gieselmann, Volkmar
AU - Bugiani, Marianna
N1 - Publisher Copyright:
© 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Objective: In metachromatic leukodystrophy, a lysosomal storage disorder due to decreased arylsulfatase A activity, hematopoietic stem cell transplantation may stop brain demyelination and allow remyelination, thereby halting white matter degeneration. This is the first study to define the effects and therapeutic mechanisms of hematopoietic stem cell transplantation on brain tissue of transplanted metachromatic leukodystrophy patients. Methods: Autopsy brain tissue was obtained from eight (two transplanted and six nontransplanted) metachromatic leukodystrophy patients, and two age-matched controls. We examined the presence of donor cells by immunohistochemistry and microscopy. In addition, we assessed myelin content, oligodendrocyte numbers, and macrophage phenotypes. An unpaired t-test, linear regression or the nonparametric Mann–Whitney U-test was performed to evaluate differences between the transplanted, nontransplanted, and control group. Results: In brain tissue of transplanted patients, we found metabolically competent donor macrophages expressing arylsulfatase A distributed throughout the entire white matter. Compared to nontransplanted patients, these macrophages preferentially expressed markers of alternatively activated, anti-inflammatory cells that may support oligodendrocyte survival and differentiation. Additionally, transplanted patients showed higher numbers of oligodendrocytes and evidence for remyelination. Contrary to the current hypothesis on therapeutic mechanism of hematopoietic cell transplantation in metachromatic leukodystrophy, we detected no enzymatic cross-correction to resident astrocytes and oligodendrocytes. Interpretation: In conclusion, donor macrophages are able to digest accumulated sulfatides and may play a neuroprotective role for resident oligodendrocytes, thereby enabling remyelination, albeit without evidence of cross-correction of oligo- and astroglia. These results emphasize the importance of immunomodulation in addition to the metabolic correction, which might be exploited for improved outcomes.
AB - Objective: In metachromatic leukodystrophy, a lysosomal storage disorder due to decreased arylsulfatase A activity, hematopoietic stem cell transplantation may stop brain demyelination and allow remyelination, thereby halting white matter degeneration. This is the first study to define the effects and therapeutic mechanisms of hematopoietic stem cell transplantation on brain tissue of transplanted metachromatic leukodystrophy patients. Methods: Autopsy brain tissue was obtained from eight (two transplanted and six nontransplanted) metachromatic leukodystrophy patients, and two age-matched controls. We examined the presence of donor cells by immunohistochemistry and microscopy. In addition, we assessed myelin content, oligodendrocyte numbers, and macrophage phenotypes. An unpaired t-test, linear regression or the nonparametric Mann–Whitney U-test was performed to evaluate differences between the transplanted, nontransplanted, and control group. Results: In brain tissue of transplanted patients, we found metabolically competent donor macrophages expressing arylsulfatase A distributed throughout the entire white matter. Compared to nontransplanted patients, these macrophages preferentially expressed markers of alternatively activated, anti-inflammatory cells that may support oligodendrocyte survival and differentiation. Additionally, transplanted patients showed higher numbers of oligodendrocytes and evidence for remyelination. Contrary to the current hypothesis on therapeutic mechanism of hematopoietic cell transplantation in metachromatic leukodystrophy, we detected no enzymatic cross-correction to resident astrocytes and oligodendrocytes. Interpretation: In conclusion, donor macrophages are able to digest accumulated sulfatides and may play a neuroprotective role for resident oligodendrocytes, thereby enabling remyelination, albeit without evidence of cross-correction of oligo- and astroglia. These results emphasize the importance of immunomodulation in addition to the metabolic correction, which might be exploited for improved outcomes.
UR - http://www.scopus.com/inward/record.url?scp=85078802086&partnerID=8YFLogxK
U2 - 10.1002/acn3.50975
DO - 10.1002/acn3.50975
M3 - Article
C2 - 31967741
AN - SCOPUS:85078802086
SN - 2328-9503
VL - 7
SP - 169
EP - 180
JO - Annals of Clinical and Translational Neurology
JF - Annals of Clinical and Translational Neurology
IS - 2
ER -