TY - JOUR
T1 - Network-based expression analysis reveals key genes related to glucocorticoid resistance in infant acute lymphoblastic leukemia
AU - Mousavian, Zaynab
AU - Nowzari-Dalini, Abbas
AU - Stam, Ronald W.
AU - Rahmatallah, Yasir
AU - Masoudi-Nejad, Ali
N1 - Publisher Copyright:
© 2016, International Society for Cellular Oncology.
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Purpose: Despite vast improvements that have been made in the treatment of children with acute lymphoblastic leukemia (ALL), the majority of infant ALL patients (~80 %, < 1 year of age) that carry a chromosomal translocation involving the mixed lineage leukemia (MLL) gene shows a poor response to chemotherapeutic drugs, especially glucocorticoids (GCs), which are essential components of all current treatment regimens. Although addressed in several studies, the mechanism(s) underlying this phenomenon have remained largely unknown. A major drawback of most previous studies is their primary focus on individual genes, thereby neglecting the putative significance of inter-gene correlations. Here, we aimed at studying GC resistance in MLL-rearranged infant ALL patients by inferring an associated module of genes using co-expression network analysis. The implications of newly identified candidate genes with associations to other well-known relevant genes from the same module, or with associations to known transcription factor or microRNA interactions, were substantiated using literature data. Methods: A weighted gene co-expression network was constructed to identify gene modules associated with GC resistance in MLL-rearranged infant ALL patients. Significant gene ontology (GO) terms and signaling pathways enriched in relevant modules were used to provide guidance towards which module(s) consisted of promising candidates suitable for further analysis. Results: Through gene co-expression network analysis a novel set of genes (module) related to GC-resistance was identified. The presence in this module of the S100 and ANXA genes, both well-known biomarkers for GC resistance in MLL-rearranged infant ALL, supports its validity. Subsequent gene set net correlation analyses of the novel module provided further support for its validity by showing that the S100 and ANXA genes act as ‘hub’ genes with potentially major regulatory roles in GC sensitivity, but having lost this role in the GC resistant phenotype. The detected module implicates new genes as being candidates for further analysis through associations with known GC resistance-related genes. Conclusions: From our data we conclude that available systems biology approaches can be employed to detect new candidate genes that may provide further insights into drug resistance of MLL-rearranged infant ALL cases. Such approaches complement conventional gene-wise approaches by taking putative functional interactions between genes into account.
AB - Purpose: Despite vast improvements that have been made in the treatment of children with acute lymphoblastic leukemia (ALL), the majority of infant ALL patients (~80 %, < 1 year of age) that carry a chromosomal translocation involving the mixed lineage leukemia (MLL) gene shows a poor response to chemotherapeutic drugs, especially glucocorticoids (GCs), which are essential components of all current treatment regimens. Although addressed in several studies, the mechanism(s) underlying this phenomenon have remained largely unknown. A major drawback of most previous studies is their primary focus on individual genes, thereby neglecting the putative significance of inter-gene correlations. Here, we aimed at studying GC resistance in MLL-rearranged infant ALL patients by inferring an associated module of genes using co-expression network analysis. The implications of newly identified candidate genes with associations to other well-known relevant genes from the same module, or with associations to known transcription factor or microRNA interactions, were substantiated using literature data. Methods: A weighted gene co-expression network was constructed to identify gene modules associated with GC resistance in MLL-rearranged infant ALL patients. Significant gene ontology (GO) terms and signaling pathways enriched in relevant modules were used to provide guidance towards which module(s) consisted of promising candidates suitable for further analysis. Results: Through gene co-expression network analysis a novel set of genes (module) related to GC-resistance was identified. The presence in this module of the S100 and ANXA genes, both well-known biomarkers for GC resistance in MLL-rearranged infant ALL, supports its validity. Subsequent gene set net correlation analyses of the novel module provided further support for its validity by showing that the S100 and ANXA genes act as ‘hub’ genes with potentially major regulatory roles in GC sensitivity, but having lost this role in the GC resistant phenotype. The detected module implicates new genes as being candidates for further analysis through associations with known GC resistance-related genes. Conclusions: From our data we conclude that available systems biology approaches can be employed to detect new candidate genes that may provide further insights into drug resistance of MLL-rearranged infant ALL cases. Such approaches complement conventional gene-wise approaches by taking putative functional interactions between genes into account.
KW - Acute lymphoblastic leukemia
KW - Drug resistance
KW - Gene co-expression network
KW - Glucocorticoid treatment
KW - Systems biology
UR - http://www.scopus.com/inward/record.url?scp=84992747455&partnerID=8YFLogxK
U2 - 10.1007/s13402-016-0303-7
DO - 10.1007/s13402-016-0303-7
M3 - Article
C2 - 27798768
AN - SCOPUS:84992747455
SN - 2211-3428
VL - 40
SP - 33
EP - 45
JO - Cellular Oncology
JF - Cellular Oncology
IS - 1
ER -