Nuclear Receptor Subfamily 4A Signaling as a Key Disease Pathway of CD1c+ Dendritic Cell Dysregulation in Systemic Sclerosis

Nila H Servaas, Sanne Hiddingh, Eleni Chouri, Catharina G K Wichers, Alsya J Affandi, Andrea Ottria, Cornelis P J Bekker, Marta Cossu, Sandra C Silva-Cardoso, Maarten van der Kroef, Anneline C Hinrichs, Tiago Carvalheiro, Nadia Vazirpanah, Lorenzo Beretta, Marzia Rossato, Femke Bonte-Mineur, Timothy R D J Radstake, Jonas J W Kuiper, Marianne Boes, Aridaman Pandit

Research output: Contribution to journalArticlepeer-review

Abstract

OBJECTIVE: This study was undertaken to identify key disease pathways driving conventional dendritic cell (cDC) alterations in systemic sclerosis (SSc).

METHODS: Transcriptomic profiling was performed on peripheral blood CD1c+ cDCs (cDC2s) isolated from 12 healthy donors and 48 patients with SSc, including all major disease subtypes. We performed differential expression analysis for the different SSc subtypes and healthy donors to uncover genes dysregulated in SSc. To identify biologically relevant pathways, we built a gene coexpression network using weighted gene correlation network analysis. We validated the role of key transcriptional regulators using chromatin immunoprecipitation (ChIP) sequencing and in vitro functional assays.

RESULTS: We identified 17 modules of coexpressed genes in cDCs that correlated with SSc subtypes and key clinical traits, including autoantibodies, skin score, and occurrence of interstitial lung disease. A module of immunoregulatory genes was markedly down-regulated in patients with the diffuse SSc subtype characterized by severe fibrosis. Transcriptional regulatory network analysis performed on this module predicted nuclear receptor 4A (NR4A) subfamily genes (NR4A1, NR4A2, NR4A3) as the key transcriptional regulators of inflammation. Indeed, ChIP-sequencing analysis indicated that these NR4A members target numerous differentially expressed genes in SSc cDC2s. Inclusion of NR4A receptor agonists in culture-based experiments provided functional proof that dysregulation of NR4As affects cytokine production by cDC2s and modulates downstream T cell activation.

CONCLUSION: NR4A1, NR4A2, and NR4A3 are important regulators of immunosuppressive and fibrosis-associated pathways in SSc cDCs. Thus, the NR4A family represents novel potential targets to restore cDC homeostasis in SSc.

Original languageEnglish
Pages (from-to)279-292
Number of pages14
JournalArthritis & rheumatology (Hoboken, N.J.)
Volume75
Issue number2
DOIs
Publication statusPublished - Jan 2023
Externally publishedYes

Keywords

  • Humans
  • Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
  • Gene Expression Regulation
  • Gene Expression
  • Scleroderma, Systemic/genetics
  • Fibrosis
  • Glycoproteins/metabolism
  • Antigens, CD1/genetics

Fingerprint

Dive into the research topics of 'Nuclear Receptor Subfamily 4A Signaling as a Key Disease Pathway of CD1c+ Dendritic Cell Dysregulation in Systemic Sclerosis'. Together they form a unique fingerprint.

Cite this