PI3K/AKT is involved in mediating survival signals that rescue Ewing tumour cells from fibroblast growth factor 2-induced cell death

M Hotfilder, P Sondermann, A Senss, F van Valen, H Jürgens, J Vormoor

Research output: Contribution to journalArticlepeer-review

Abstract

While in vitro studies had shown that fibroblast growth factor 2 (FGF2) can induce cell death in Ewing tumours, it remained unclear how Ewing tumour cells survive in vivo within a FGF2-rich microenvironment. Serum- and integrin-mediated survival signals were, therefore, studied in adherent monolayer and anchorage-independent colony cell cultures. In a panel of Ewing tumour cell lines, either adhesion to collagen or exposure to serum alone only had a minor protective effect against FGF2. However, both combined led to complete resistance to 5 ng ml(-1) FGF2 in three of four FGF2-sensitive cell lines (RD-ES, RM-82 and WE-68), and to an increased survival as compared to other culture conditions in TC-71 cells. Inhibition studies with LY294002 demonstrated that the serum signal is mediated via the phosphoinositide 3-OH kinase/AKT pathway. Thus, Ewing tumour cells escape FGF2-induced cell death by modulating FGF2 signalling. The tumour microenvironment provides the necessary survival signals by integrin-mediated adhesion and soluble serum factor(s). These survival signals warrant further investigation as a potential resistance mechanism to other apoptosis-inducing agents in vivo.

Original languageEnglish
Pages (from-to)705-10
Number of pages6
JournalBritish journal of cancer
Volume92
Issue number4
DOIs
Publication statusPublished - 28 Feb 2005
Externally publishedYes

Keywords

  • Bone Neoplasms/metabolism
  • Cell Death
  • Cell Line, Tumor
  • Cell Survival
  • Fibroblast Growth Factor 2/metabolism
  • Humans
  • Phosphatidylinositol 3-Kinases/metabolism
  • Protein Serine-Threonine Kinases/metabolism
  • Proto-Oncogene Proteins/metabolism
  • Proto-Oncogene Proteins c-akt
  • Sarcoma, Ewing/metabolism
  • Signal Transduction

Fingerprint

Dive into the research topics of 'PI3K/AKT is involved in mediating survival signals that rescue Ewing tumour cells from fibroblast growth factor 2-induced cell death'. Together they form a unique fingerprint.

Cite this