Abstract
While in vitro studies had shown that fibroblast growth factor 2 (FGF2) can induce cell death in Ewing tumours, it remained unclear how Ewing tumour cells survive in vivo within a FGF2-rich microenvironment. Serum- and integrin-mediated survival signals were, therefore, studied in adherent monolayer and anchorage-independent colony cell cultures. In a panel of Ewing tumour cell lines, either adhesion to collagen or exposure to serum alone only had a minor protective effect against FGF2. However, both combined led to complete resistance to 5 ng ml(-1) FGF2 in three of four FGF2-sensitive cell lines (RD-ES, RM-82 and WE-68), and to an increased survival as compared to other culture conditions in TC-71 cells. Inhibition studies with LY294002 demonstrated that the serum signal is mediated via the phosphoinositide 3-OH kinase/AKT pathway. Thus, Ewing tumour cells escape FGF2-induced cell death by modulating FGF2 signalling. The tumour microenvironment provides the necessary survival signals by integrin-mediated adhesion and soluble serum factor(s). These survival signals warrant further investigation as a potential resistance mechanism to other apoptosis-inducing agents in vivo.
Original language | English |
---|---|
Pages (from-to) | 705-10 |
Number of pages | 6 |
Journal | British journal of cancer |
Volume | 92 |
Issue number | 4 |
DOIs | |
Publication status | Published - 28 Feb 2005 |
Externally published | Yes |
Keywords
- Bone Neoplasms/metabolism
- Cell Death
- Cell Line, Tumor
- Cell Survival
- Fibroblast Growth Factor 2/metabolism
- Humans
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Sarcoma, Ewing/metabolism
- Signal Transduction