Small Rho GTPase-mediated actin dynamics at endothelial adherens junctions

Jaap D. van Buul, Ilse Timmerman

Research output: Contribution to journalComment/debate

49 Citations (Scopus)

Abstract

VE-cadherin-based cell-cell junctions form the major restrictive barrier of the endothelium to plasma proteins and blood cells. The function of VE-cadherin and the actin cytoskeleton are intimately linked. Vascular permeability factors and adherent leukocytes signal through small Rho GTPases to tightly regulate actin cytoskeletal rearrangements in order to open and re-assemble endothelial cell-cell junctions in a rapid and controlled manner. The Rho GTPases are activated by guanine nucleotide exchange factors (GEFs), conferring specificity and context-dependent control of cell-cell junctions. Although the molecular mechanisms that couple cadherins to actin filaments are beginning to be elucidated, specific stimulus-dependent regulation of the actin cytoskeleton at VE-cadherin-based junctions remains unexplained. Accumulating evidence has suggested that depending on the vascular permeability factor and on the subcellular localization of GEFs, cell-cell junction dynamics and organization are differentially regulated by one specific Rho GTPase. In this Commentary, we focus on new insights how the junctional actin cytoskeleton is specifically and locally regulated by Rho GTPases and GEFs in the endothelium.

Original languageEnglish
Pages (from-to)21-31
Number of pages11
JournalSmall GTPases
Volume7
Issue number1
DOIs
Publication statusPublished - 2 Jan 2016
Externally publishedYes

Keywords

  • endothelium
  • GEF
  • GTPase
  • junction
  • VE-cadherin

Fingerprint

Dive into the research topics of 'Small Rho GTPase-mediated actin dynamics at endothelial adherens junctions'. Together they form a unique fingerprint.

Cite this