TY - JOUR
T1 - Somatic mutations and copy number variations in breast cancers with heterogeneous HER2 amplification
AU - Van Bockstal, Mieke R.
AU - Agahozo, Marie Colombe
AU - van Marion, Ronald
AU - Atmodimedjo, Peggy N.
AU - Sleddens, Hein F.B.M.
AU - Dinjens, Winand N.M.
AU - Visser, Lindy L.
AU - Lips, Esther H.
AU - Wesseling, Jelle
AU - van Deurzen, Carolien H.M.
N1 - Publisher Copyright:
© 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Intratumour heterogeneity fuels carcinogenesis and allows circumventing specific targeted therapies. HER2 gene amplification is associated with poor outcome in invasive breast cancer. Heterogeneous HER2 amplification has been described in 5–41% of breast cancers. Here, we investigated the genetic differences between HER2-positive and HER2-negative admixed breast cancer components. We performed an in-depth analysis to explore the potential heterogeneity in the somatic mutational landscape of each individual tumour component. Formalin-fixed, paraffin-embedded breast cancer tissue of ten patients with at least one HER2-negative and at least one HER2-positive component was microdissected. Targeted next-generation sequencing was performed using a customized 53-gene panel. Somatic mutations and copy number variations were analysed. Overall, the tumours showed a heterogeneous distribution of 12 deletions, 9 insertions, 32 missense variants and 7 nonsense variants in 26 different genes, which are (likely) pathogenic. Three splice site alterations were identified. One patient had an EGFR copy number gain restricted to a HER2-negative in situ component, resulting in EGFR protein overexpression. Two patients had FGFR1 copy number gains in at least one tumour component. Two patients had an 8q24 gain in at least one tumour component, resulting in a copy number increase in MYC and PVT1. One patient had a CCND1 copy number gain restricted to a HER2-negative tumour component. No common alternative drivers were identified in the HER2-negative tumour components. This series of 10 breast cancers with heterogeneous HER2 gene amplification illustrates that HER2 positivity is not an unconditional prerequisite for the maintenance of tumour growth. Many other molecular aberrations are likely to act as alternative or collaborative drivers. This study demonstrates that breast carcinogenesis is a dynamically evolving process characterized by a versatile somatic mutational profile, of which some genetic aberrations will be crucial for cancer progression, and others will be mere ‘passenger’ molecular anomalies.
AB - Intratumour heterogeneity fuels carcinogenesis and allows circumventing specific targeted therapies. HER2 gene amplification is associated with poor outcome in invasive breast cancer. Heterogeneous HER2 amplification has been described in 5–41% of breast cancers. Here, we investigated the genetic differences between HER2-positive and HER2-negative admixed breast cancer components. We performed an in-depth analysis to explore the potential heterogeneity in the somatic mutational landscape of each individual tumour component. Formalin-fixed, paraffin-embedded breast cancer tissue of ten patients with at least one HER2-negative and at least one HER2-positive component was microdissected. Targeted next-generation sequencing was performed using a customized 53-gene panel. Somatic mutations and copy number variations were analysed. Overall, the tumours showed a heterogeneous distribution of 12 deletions, 9 insertions, 32 missense variants and 7 nonsense variants in 26 different genes, which are (likely) pathogenic. Three splice site alterations were identified. One patient had an EGFR copy number gain restricted to a HER2-negative in situ component, resulting in EGFR protein overexpression. Two patients had FGFR1 copy number gains in at least one tumour component. Two patients had an 8q24 gain in at least one tumour component, resulting in a copy number increase in MYC and PVT1. One patient had a CCND1 copy number gain restricted to a HER2-negative tumour component. No common alternative drivers were identified in the HER2-negative tumour components. This series of 10 breast cancers with heterogeneous HER2 gene amplification illustrates that HER2 positivity is not an unconditional prerequisite for the maintenance of tumour growth. Many other molecular aberrations are likely to act as alternative or collaborative drivers. This study demonstrates that breast carcinogenesis is a dynamically evolving process characterized by a versatile somatic mutational profile, of which some genetic aberrations will be crucial for cancer progression, and others will be mere ‘passenger’ molecular anomalies.
KW - breast cancer
KW - copy number variations
KW - HER2 amplification
KW - intratumour heterogeneity
KW - next-generation sequencing
KW - somatic mutation
UR - http://www.scopus.com/inward/record.url?scp=85082329627&partnerID=8YFLogxK
U2 - 10.1002/1878-0261.12650
DO - 10.1002/1878-0261.12650
M3 - Article
C2 - 32058674
AN - SCOPUS:85082329627
SN - 1574-7891
VL - 14
SP - 671
EP - 685
JO - Molecular Oncology
JF - Molecular Oncology
IS - 4
ER -