Trimethylation of H3K27 during human cerebellar development in relation to medulloblastoma

Sharyar Mir, Michiel Smits, Dennis Biesmans, Machteld Julsing, Marianna Bugiani, Eleanora Aronica, Gertjan J.L. Kaspers, Jacqueline Cloos, Thomas Wurdinger, Esther Hulleman

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


Medulloblastoma (MB), the most common malignant childhood brain tumor, encompasses a collection of four clinically and molecularly distinct tumor subgroups, i.e. WNT, SHH, Group 3 and Group 4. These tumors are believed to originate from precursor cells during cerebellar development. Although the exact etiology of these brain tumors is not yet known, histone modifications are increasingly recognized as key events during cerebellum development and MB tumorigenesis. Recent studies show that key components involved in post-translational modifications of histone H3 lysine 27 (H3K27) are commonly deregulated in MB. In this descriptive study, we have investigated the trimethylation status of H3K27, as well as the expression of the H3K27 methylase EZH2 and demethylases KDM6A and KDM6B, during human cerebellum development in relation to MB. H3K27 Trimethylation status differed between the MB subgroups. Moreover, trimethylation of H3K27 and expression of its modifiers EZH2, KDM6A and KDM6B were detected in a spatio-temporal manner during development of the human cerebellum, with consistent high occurrence in the four proliferative zones, which are believed to harbor the precursor cells of the different MB subgroups. Our results suggest that H3K27 trimethylation in MB is deregulated by EZH2, KDM6A and KDM6B. Moreover, we provide evidence that during development of the human cerebellum H3K27me3 and its regulators are expressed in a spatio-temporal manner.
Original languageEnglish
Pages (from-to)78978-78988
Number of pages10
Issue number45
Publication statusPublished - 8 Sept 2017
Externally publishedYes


  • cerebellum
  • brain development
  • medulloblastoma
  • histone 3 trimethylation
  • Immunohistochemistry


Dive into the research topics of 'Trimethylation of H3K27 during human cerebellar development in relation to medulloblastoma'. Together they form a unique fingerprint.

Cite this