Automatic, fast and robust characterization of noise distributions for diffusion MRI

Samuel St-Jean, Alberto De Luca, Max A. Viergever, Alexander Leemans

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdragepeer review

4 Citaten (Scopus)

Samenvatting

Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process. The use of parallel imaging methods, the number of receiver coils and imaging filters applied by the scanner, amongst other factors, dictate the resulting signal distribution. Accurate estimation beyond textbook Rician or noncentral chi distributions often requires information about the acquisition process (e.g.coils sensitivity maps or reconstruction coefficients), which is not usually available. We introduce a new method where a change of variable naturally gives rise to a particular form of the gamma distribution for background signals. The first moments and maximum likelihood estimators of this gamma distribution explicitly depend on the number of coils, making it possible to estimate all unknown parameters using only the magnitude data. A rejection step is used to make the method automatic and robust to artifacts. Experiments on synthetic datasets show that the proposed method can reliably estimate both the degrees of freedom and the standard deviation. The worst case errors range from below 2% (spatially uniform noise) to approximately 10% (spatially variable noise). Repeated acquisitions of in vivo datasets show that the estimated parameters are stable and have lower variances than compared methods.

Originele taal-2Engels
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
RedacteurenJulia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, Gabor Fichtinger, Alejandro F. Frangi
UitgeverijSpringer Verlag
Pagina's304-312
Aantal pagina's9
ISBN van geprinte versie9783030009274
DOI's
StatusGepubliceerd - 2018
Extern gepubliceerdJa
Evenement21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spanje
Duur: 16 sep. 201820 sep. 2018

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11070 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Land/RegioSpanje
StadGranada
Periode16/09/1820/09/18

Vingerafdruk

Duik in de onderzoeksthema's van 'Automatic, fast and robust characterization of noise distributions for diffusion MRI'. Samen vormen ze een unieke vingerafdruk.

Citeer dit