TY - GEN
T1 - Automatic, fast and robust characterization of noise distributions for diffusion MRI
AU - St-Jean, Samuel
AU - De Luca, Alberto
AU - Viergever, Max A.
AU - Leemans, Alexander
N1 - Publisher Copyright:
© Springer Nature Switzerland AG 2018.
PY - 2018
Y1 - 2018
N2 - Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process. The use of parallel imaging methods, the number of receiver coils and imaging filters applied by the scanner, amongst other factors, dictate the resulting signal distribution. Accurate estimation beyond textbook Rician or noncentral chi distributions often requires information about the acquisition process (e.g.coils sensitivity maps or reconstruction coefficients), which is not usually available. We introduce a new method where a change of variable naturally gives rise to a particular form of the gamma distribution for background signals. The first moments and maximum likelihood estimators of this gamma distribution explicitly depend on the number of coils, making it possible to estimate all unknown parameters using only the magnitude data. A rejection step is used to make the method automatic and robust to artifacts. Experiments on synthetic datasets show that the proposed method can reliably estimate both the degrees of freedom and the standard deviation. The worst case errors range from below 2% (spatially uniform noise) to approximately 10% (spatially variable noise). Repeated acquisitions of in vivo datasets show that the estimated parameters are stable and have lower variances than compared methods.
AB - Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process. The use of parallel imaging methods, the number of receiver coils and imaging filters applied by the scanner, amongst other factors, dictate the resulting signal distribution. Accurate estimation beyond textbook Rician or noncentral chi distributions often requires information about the acquisition process (e.g.coils sensitivity maps or reconstruction coefficients), which is not usually available. We introduce a new method where a change of variable naturally gives rise to a particular form of the gamma distribution for background signals. The first moments and maximum likelihood estimators of this gamma distribution explicitly depend on the number of coils, making it possible to estimate all unknown parameters using only the magnitude data. A rejection step is used to make the method automatic and robust to artifacts. Experiments on synthetic datasets show that the proposed method can reliably estimate both the degrees of freedom and the standard deviation. The worst case errors range from below 2% (spatially uniform noise) to approximately 10% (spatially variable noise). Repeated acquisitions of in vivo datasets show that the estimated parameters are stable and have lower variances than compared methods.
UR - http://www.scopus.com/inward/record.url?scp=85054053347&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-00928-1_35
DO - 10.1007/978-3-030-00928-1_35
M3 - Conference contribution
AN - SCOPUS:85054053347
SN - 9783030009274
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 304
EP - 312
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
A2 - Schnabel, Julia A.
A2 - Davatzikos, Christos
A2 - Alberola-López, Carlos
A2 - Fichtinger, Gabor
A2 - Frangi, Alejandro F.
PB - Springer Verlag
T2 - 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Y2 - 16 September 2018 through 20 September 2018
ER -