@inbook{633eabee59634159b25d94cf126176a2,
title = "CANINE CUSHING'S SYNDROME: Prognostic Factors and New Treatment Options",
abstract = "Predicting the binding mode of flexible polypeptides to proteins is an important task that falls outside the domain of applicability of most small molecule and protein−protein docking tools. Here, we test the small molecule flexible ligand docking program Glide on a set of 19 non-α-helical peptides and systematically improve pose prediction accuracy bynhancing Glide sampling for flexible polypeptides. In addition, scoring of the poses was improved by post-processing with physics-based implicit solvent MM- GBSA calculations. Using the best RMSD among the top 10 scoring poses as a metric, the success rate (RMSD ≤ 2.0 {\AA} for the interface backbone atoms) increased from 21% with default Glide SP settings to 58% with the enhanced peptide sampling and scoring protocol in the case of redocking to the native protein structure. This approaches the accuracy of the recently developed Rosetta FlexPepDock method (63% success for these 19 peptides) while being over 100 times faster. Cross-docking was performed for a subset of cases where an unbound receptor structure was available, and in that case, 40% of peptides were docked successfully. We analyze the results and find that the optimized polypeptide protocol is most accurate for extended peptides of limited size and number of formal charges, defining a domain of applicability for this approach.",
author = "Karin Sanders",
year = "2019",
language = "English",
isbn = "978-90-393-7120-6",
series = "PhD thesis, Faculty of Veterinary Medicine Utrecht University",
pages = "14--30",
booktitle = "PhD thesis, Faculty of Veterinary Medicine Utrecht University",
}