TY - JOUR
T1 - DNA methylation restricts spontaneous multi-lineage differentiation of mesenchymal progenitor cells, but is stable during growth factor-induced terminal differentiation
AU - Hupkes, Marlinda
AU - van Someren, Eugene P.
AU - Middelkamp, Sjors H.A.
AU - Piek, Ester
AU - van Zoelen, Everardus J.
AU - Dechering, Koen J.
N1 - Funding Information:
This work was supported by a Casimir grant from NWO (project number 018.002.035 ) and by Merck Sharp & Dohme (Oss, the Netherlands).
PY - 2011/5
Y1 - 2011/5
N2 - The progressive restriction of differentiation potential from pluripotent embryonic stem cells, via multipotent progenitor cells to terminally differentiated, mature somatic cells, involves step-wise changes in transcription patterns that are tightly controlled by the coordinated action of key transcription factors and changes in epigenetic modifications. While previous studies have demonstrated tissue-specific differences in DNA methylation patterns that might function in lineage restriction, it is unclear at what exact developmental stage these differences arise. Here, we have studied whether terminal, multi-lineage differentiation of C2C12 myoblasts is accompanied by lineage-specific changes in DNA methylation patterns. Using bisulfite sequencing and genome-wide methylated DNA- and chromatin immunoprecipitation-on-chip techniques we show that in these cells, in general, myogenic genes are enriched for RNA polymerase II and hypomethylated, whereas osteogenic genes show lower polymerase occupancy and are hypermethylated. Removal of DNA methylation marks by 5-azacytidine (5AC) treatment alters the myogenic lineage commitment of these cells and induces spontaneous osteogenic and adipogenic differentiation. This is accompanied by upregulation of key lineage-specific transcription factors. We subsequently analyzed genome-wide changes in DNA methylation and polymerase II occupancy during BMP2-induced osteogenesis. Our data indicate that BMP2 is able to induce the transcriptional program underlying osteogenesis without changing the methylation status of the genome. We conclude that DNA methylation primes C2C12 cells for myogenesis and prevents spontaneous osteogenesis, but still permits induction of the osteogenic transcriptional program upon BMP2 stimulation. Based on these results, we propose that cell type-specific DNA methylation patterns are established prior to terminal differentiation of adult progenitor cells. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
AB - The progressive restriction of differentiation potential from pluripotent embryonic stem cells, via multipotent progenitor cells to terminally differentiated, mature somatic cells, involves step-wise changes in transcription patterns that are tightly controlled by the coordinated action of key transcription factors and changes in epigenetic modifications. While previous studies have demonstrated tissue-specific differences in DNA methylation patterns that might function in lineage restriction, it is unclear at what exact developmental stage these differences arise. Here, we have studied whether terminal, multi-lineage differentiation of C2C12 myoblasts is accompanied by lineage-specific changes in DNA methylation patterns. Using bisulfite sequencing and genome-wide methylated DNA- and chromatin immunoprecipitation-on-chip techniques we show that in these cells, in general, myogenic genes are enriched for RNA polymerase II and hypomethylated, whereas osteogenic genes show lower polymerase occupancy and are hypermethylated. Removal of DNA methylation marks by 5-azacytidine (5AC) treatment alters the myogenic lineage commitment of these cells and induces spontaneous osteogenic and adipogenic differentiation. This is accompanied by upregulation of key lineage-specific transcription factors. We subsequently analyzed genome-wide changes in DNA methylation and polymerase II occupancy during BMP2-induced osteogenesis. Our data indicate that BMP2 is able to induce the transcriptional program underlying osteogenesis without changing the methylation status of the genome. We conclude that DNA methylation primes C2C12 cells for myogenesis and prevents spontaneous osteogenesis, but still permits induction of the osteogenic transcriptional program upon BMP2 stimulation. Based on these results, we propose that cell type-specific DNA methylation patterns are established prior to terminal differentiation of adult progenitor cells. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
KW - 5-Azacytidine
KW - Bone morphogenetic protein 2
KW - Differentiation
KW - DNA methylation
KW - Myoblast
KW - Osteoblast
UR - http://www.scopus.com/inward/record.url?scp=79955662450&partnerID=8YFLogxK
U2 - 10.1016/j.bbamcr.2011.01.022
DO - 10.1016/j.bbamcr.2011.01.022
M3 - Article
C2 - 21277338
AN - SCOPUS:79955662450
SN - 0167-4889
VL - 1813
SP - 839
EP - 849
JO - Biochimica et Biophysica Acta - Molecular Cell Research
JF - Biochimica et Biophysica Acta - Molecular Cell Research
IS - 5
ER -