Driver Fusions and Their Implications in the Development and Treatment of Human Cancers

The Fusion Analysis Working Group, The Cancer Genome Atlas Research Network

Onderzoeksoutput: Bijdrage aan tijdschriftArtikelpeer review

419 Citaten (Scopus)

Samenvatting

Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy. Gao et al. analyze a 9,624 sample TCGA cohort with 33 cancer types to detect gene fusion events. They provide a landscape of fusion events detected, relate fusions to gene expression, focus on kinase fusion structures, examine mutually exclusive mutation and fusion patterns, and highlight fusion druggability.

Originele taal-2Engels
Pagina's (van-tot)227-238.e3
TijdschriftCell Reports
Volume23
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 3 apr. 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Driver Fusions and Their Implications in the Development and Treatment of Human Cancers'. Samen vormen ze een unieke vingerafdruk.

Citeer dit