TY - JOUR
T1 - Earlier extracranial progression and shorter survival in ALK-rearranged lung cancer with positive liquid rebiopsies
AU - Christopoulos, Petros
AU - Dietz, Steffen
AU - Angeles, Arlou K.
AU - Rheinheimer, Stephan
AU - Kazdal, Daniel
AU - Volckmar, Anna Lena
AU - Janke, Florian
AU - Endris, Volker
AU - Meister, Michael
AU - Kriegsmann, Mark
AU - Zemojtel, Thomasz
AU - Reck, Martin
AU - Stenzinger, Albrecht
AU - Thomas, Michael
AU - Sültmann, Holger
N1 - Publisher Copyright:
© Translational Lung Cancer Research. All rights reserved.
PY - 2021/5
Y1 - 2021/5
N2 - Background: Liquid rebiopsies can detect resistance mutations to guide therapy of anaplastic lymphoma kinase-rearranged (ALK+) non-small-cell lung cancer (NSCLC) failing tyrosine kinase inhibitors (TKI). Here, we analyze how their results relate to the anatomical pattern of disease progression and patient outcome. Methods: Clinical, molecular, and radiologic characteristics of consecutive TKI-treated ALK+ NSCLC patients were analyzed using prospectively collected plasma samples and the 17-gene targeted AVENIO kit, which covers oncogenic drivers and all TP53 exons. Results: In 56 patients, 139 instances of radiologic changes were analyzed, of which 133 corresponded to disease progression. Circulating tumor DNA (ctDNA) alterations were identified in most instances of extracranial progression (58/94 or 62%), especially if concomitant intracranial progression was also present (89%, P<0.001), but rarely in case of isolated central nervous system (CNS) progression (8/39 or 21%, P<0.001). ctDNA detectability correlated with presence of “short” echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion variants (mainly V3, E6:A20) and/or TP53 mutations (P<0.05), and presented therapeutic opportunities in <50% of cases. Patients with extracranial progression and positive liquid biopsies had shorter survival from the start of palliative treatment (mean 52 vs. 69 months, P=0.002), regardless of previous and subsequent therapy and initial ECOG performance status. Furthermore, for patients with extracranial progression, ctDNA detectability was associated with shorter next-line progression-free survival (PFS) (3 vs. 13 months, P=0.003) if they were switched to another systemic therapy (49/86 samples), and with shorter time-to-next-treatment (TNT) (3 vs. 8 months, P=0.004) if they were continued on the same treatment due to oligoprogression (37/86). In contrast, ctDNA detectability was not associated with the outcome of patients showing CNS-only progression. In 6/6 cases with suspicion of non-neoplastic radiologic lung changes (mainly infection or pneumonitis), ctDNA results remained negative. Conclusions: Positive blood-based liquid rebiopsies in ALK+ NSCLC characterize biologically more aggressive disease and are common with extracranial, but rare with CNS-only progression or benign radiologic changes. These results reconcile the increased detection of ALK resistance mutations with other features of the high-risk EML4-ALK V3-associated phenotype. Conversely, most oligoprogressive patients with negative liquid biopsies have a more indolent course without need for early change of systemic treatment.
AB - Background: Liquid rebiopsies can detect resistance mutations to guide therapy of anaplastic lymphoma kinase-rearranged (ALK+) non-small-cell lung cancer (NSCLC) failing tyrosine kinase inhibitors (TKI). Here, we analyze how their results relate to the anatomical pattern of disease progression and patient outcome. Methods: Clinical, molecular, and radiologic characteristics of consecutive TKI-treated ALK+ NSCLC patients were analyzed using prospectively collected plasma samples and the 17-gene targeted AVENIO kit, which covers oncogenic drivers and all TP53 exons. Results: In 56 patients, 139 instances of radiologic changes were analyzed, of which 133 corresponded to disease progression. Circulating tumor DNA (ctDNA) alterations were identified in most instances of extracranial progression (58/94 or 62%), especially if concomitant intracranial progression was also present (89%, P<0.001), but rarely in case of isolated central nervous system (CNS) progression (8/39 or 21%, P<0.001). ctDNA detectability correlated with presence of “short” echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion variants (mainly V3, E6:A20) and/or TP53 mutations (P<0.05), and presented therapeutic opportunities in <50% of cases. Patients with extracranial progression and positive liquid biopsies had shorter survival from the start of palliative treatment (mean 52 vs. 69 months, P=0.002), regardless of previous and subsequent therapy and initial ECOG performance status. Furthermore, for patients with extracranial progression, ctDNA detectability was associated with shorter next-line progression-free survival (PFS) (3 vs. 13 months, P=0.003) if they were switched to another systemic therapy (49/86 samples), and with shorter time-to-next-treatment (TNT) (3 vs. 8 months, P=0.004) if they were continued on the same treatment due to oligoprogression (37/86). In contrast, ctDNA detectability was not associated with the outcome of patients showing CNS-only progression. In 6/6 cases with suspicion of non-neoplastic radiologic lung changes (mainly infection or pneumonitis), ctDNA results remained negative. Conclusions: Positive blood-based liquid rebiopsies in ALK+ NSCLC characterize biologically more aggressive disease and are common with extracranial, but rare with CNS-only progression or benign radiologic changes. These results reconcile the increased detection of ALK resistance mutations with other features of the high-risk EML4-ALK V3-associated phenotype. Conversely, most oligoprogressive patients with negative liquid biopsies have a more indolent course without need for early change of systemic treatment.
KW - Anaplastic lymphoma kinase-rearranged (ALK+)
KW - Extracranial progression
KW - Liquid biopsy
KW - Non-small-cell lung cancer (NSCLC)
KW - Overall survival
KW - Treatment failure
KW - Tyrosine kinase inhibitor (TKI)
UR - http://www.scopus.com/inward/record.url?scp=85106869389&partnerID=8YFLogxK
U2 - 10.21037/tlcr-21-32
DO - 10.21037/tlcr-21-32
M3 - Article
AN - SCOPUS:85106869389
VL - 10
SP - 2118
EP - 2131
JO - Translational Lung Cancer Research
JF - Translational Lung Cancer Research
SN - 2218-6751
IS - 5
ER -