Fast intraoperative histology-based diagnosis of gliomas with third harmonic generation microscopy and deep learning

Max Blokker, Philip C.de Witt Hamer, Pieter Wesseling, Marie Louise Groot, Mitko Veta

Onderzoeksoutput: Bijdrage aan tijdschriftArtikelpeer review

Samenvatting

Management of gliomas requires an invasive treatment strategy, including extensive surgical resection. The objective of the neurosurgeon is to maximize tumor removal while preserving healthy brain tissue. However, the lack of a clear tumor boundary hampers the neurosurgeon’s ability to accurately detect and resect infiltrating tumor tissue. Nonlinear multiphoton microscopy, in particular higher harmonic generation, enables label-free imaging of excised brain tissue, revealing histological hallmarks within seconds. Here, we demonstrate a real-time deep learning-based pipeline for automated glioma image analysis, matching video-rate image acquisition. We used a custom noise detection scheme, and a fully-convolutional classification network, to achieve on average 79% binary accuracy, 0.77 AUC and 0.83 mean average precision compared to the consensus of three pathologists, on a preliminary dataset. We conclude that the combination of real-time imaging and image analysis shows great potential for intraoperative assessment of brain tissue during tumor surgery.

Originele taal-2Engels
Artikelnummer11334
TijdschriftScientific Reports
Volume12
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - dec. 2022
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Fast intraoperative histology-based diagnosis of gliomas with third harmonic generation microscopy and deep learning'. Samen vormen ze een unieke vingerafdruk.

Citeer dit