TY - JOUR
T1 - Histone variant innovation in a rapidly evolving chordate lineage
AU - Moosmann, Alexandra
AU - Campsteijn, Coen
AU - Jansen, Pascal
AU - Nasrallah, Carole
AU - Raasholm, Martina
AU - Stunnenberg, Henk
AU - Thompson, Eric
N1 - Funding Information:
We thank Yvan Strahm and Svenn Helge Grindhaug at the Bergen Center for Computational Science who helped to establish a webpage where all cDNAs, genomic sequences and expression profiles of O. dioica histones are available ([81], login: oiko, password: JasVopoi). We also thank the Sars Centre Oikopleura culture facility staff for their assistance. This work was supported by grants 183690/S10 NFR-FUGE and 133335/V40 NFR from the Norwegian Research Council (E.M.T.).
PY - 2011
Y1 - 2011
N2 - Background: Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. Results: We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs) and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. Conclusions: These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.
AB - Background: Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. Results: We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs) and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. Conclusions: These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.
KW - alternative splicing
KW - DNA repair
KW - endocycle
KW - gametogenesis
KW - H2A.Z
KW - histone complement
KW - posttranslational modification
KW - testes
KW - urochordate
UR - http://www.scopus.com/inward/record.url?scp=79960563874&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-11-208
DO - 10.1186/1471-2148-11-208
M3 - Article
C2 - 21756361
AN - SCOPUS:79960563874
SN - 1471-2148
VL - 11
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 208
ER -