TY - JOUR
T1 - Impact of aging, cytomegalovirus infection, and long-term treatment for human immunodeficiency virus on CD8+ T-Cell subsets
AU - Veel, Ellen
AU - Westera, Liset
AU - van Gent, Rogier
AU - Bont, Louis
AU - Otto, Sigrid
AU - Ruijsink, Bram
AU - Rabouw, Huib H.
AU - Mudrikova, Tania
AU - Wensing, Annemarie
AU - Hoepelman, Andy I.M.
AU - Borghans, José A.M.
AU - Tesselaar, Kiki
N1 - Publisher Copyright:
© 2018 Veel, Westera, van Gent, Bont, Otto, Ruijsink, Rabouw, Mudrikova, Wensing, Hoepelman, Borghans and Tesselaar.
PY - 2018/3/21
Y1 - 2018/3/21
N2 - Both healthy aging and human immunodeficiency virus (HIV) infection lead to a progressive decline in naive CD8+ T-cell numbers and expansion of the CD8+ T-cell memory and effector compartments. HIV infection is therefore often considered a condition of premature aging. Total CD8+ T-cell numbers of HIV-infected individuals typically stay increased even after long-term (LT) combination antiretroviral treatment (cART), which is associated with an increased risk of non-AIDS morbidity and mortality. The causes of these persistent changes in the CD8+ T-cell pool remain debated. Here, we studied the impact of age, CMV infection, and LT successful cART on absolute cell numbers in different CD8+ T-cell subsets. While naïve CD8+ T-cell numbers in cART-treated individuals (N = 38) increased to healthy levels, central memory (CM), effector memory (EM), and effector CD8+ T-cell numbers remained higher than in (unselected) age-matched healthy controls (N = 107). Longitudinal analysis in a subset of patients showed that cART did result in a loss of memory CD8+ T-cells, mainly during the first year of cART, after which memory cell numbers remained relatively stable. As CMV infection is known to increase CD8+ T-cell numbers in healthy individuals, we studied whether any of the persistent changes in the CD8+ T-cell pools of cART-treated patients could be a direct reflection of the high CMV prevalence among HIV-infected individuals. We found that EM and effector CD8+ T-cell numbers in CMV+ healthy individuals (N = 87) were significantly higher than in CMV- (N = 170) healthy individuals. As a result, EM and effector CD8+ T-cell numbers in successfully cART-treated HIV-infected individuals did not deviate significantly from those of age-matched CMV+ healthy controls (N = 39). By contrast, CM T-cell numbers were quite similar in CMV+ and CMV- healthy individuals across all ages. The LT expansion of the CM CD8+ T-cell pool in cART-treated individuals could thus not be attributed directly to CMV and was also not related to residual HIV RNA or to the presence of HIV-specific CM T-cells. It remains to be investigated why the CM CD8+ T-cell subset shows seemingly irreversible changes despite years of effective treatment.
AB - Both healthy aging and human immunodeficiency virus (HIV) infection lead to a progressive decline in naive CD8+ T-cell numbers and expansion of the CD8+ T-cell memory and effector compartments. HIV infection is therefore often considered a condition of premature aging. Total CD8+ T-cell numbers of HIV-infected individuals typically stay increased even after long-term (LT) combination antiretroviral treatment (cART), which is associated with an increased risk of non-AIDS morbidity and mortality. The causes of these persistent changes in the CD8+ T-cell pool remain debated. Here, we studied the impact of age, CMV infection, and LT successful cART on absolute cell numbers in different CD8+ T-cell subsets. While naïve CD8+ T-cell numbers in cART-treated individuals (N = 38) increased to healthy levels, central memory (CM), effector memory (EM), and effector CD8+ T-cell numbers remained higher than in (unselected) age-matched healthy controls (N = 107). Longitudinal analysis in a subset of patients showed that cART did result in a loss of memory CD8+ T-cells, mainly during the first year of cART, after which memory cell numbers remained relatively stable. As CMV infection is known to increase CD8+ T-cell numbers in healthy individuals, we studied whether any of the persistent changes in the CD8+ T-cell pools of cART-treated patients could be a direct reflection of the high CMV prevalence among HIV-infected individuals. We found that EM and effector CD8+ T-cell numbers in CMV+ healthy individuals (N = 87) were significantly higher than in CMV- (N = 170) healthy individuals. As a result, EM and effector CD8+ T-cell numbers in successfully cART-treated HIV-infected individuals did not deviate significantly from those of age-matched CMV+ healthy controls (N = 39). By contrast, CM T-cell numbers were quite similar in CMV+ and CMV- healthy individuals across all ages. The LT expansion of the CM CD8+ T-cell pool in cART-treated individuals could thus not be attributed directly to CMV and was also not related to residual HIV RNA or to the presence of HIV-specific CM T-cells. It remains to be investigated why the CM CD8+ T-cell subset shows seemingly irreversible changes despite years of effective treatment.
KW - CD8 T-cells
KW - Combination antiretroviral treatment
KW - Cytomegalovirus
KW - Healthy aging
KW - Human immunodeficiency virus infection
UR - http://www.scopus.com/inward/record.url?scp=85044404002&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2018.00572
DO - 10.3389/fimmu.2018.00572
M3 - Article
AN - SCOPUS:85044404002
SN - 1664-3224
VL - 9
JO - Frontiers in Immunology
JF - Frontiers in Immunology
IS - MAR
M1 - 572
ER -