@article{c861163ef59e4718b4b2ab19f24e35b4,
title = "In situ identification of bipotent stem cells in the mammary gland",
abstract = "The mammary epithelium undergoes profound morphogenetic changes during development. Architecturally, it comprises two primary lineages, the inner luminal and outer myoepithelial cell layers. Two opposing concepts on the nature of mammary stem cells (MaSCs) in the postnatal gland have emerged. One model, based on classical transplantation assays, postulates that bipotent MaSCs have a key role in coordinating ductal epithelial expansion and maintenance in the adult gland, whereas the second model proposes that only unipotent MaSCs identified by lineage tracing contribute to these processes. Through clonal cell-fate mapping studies using a stochastic multicolour cre reporter combined with a new three-dimensional imaging strategy, we provide evidence for the existence of bipotent MaSCs as well as distinct long-lived progenitor cells. The cellular dynamics at different developmental stages support a model in which both stem and progenitor cells drive morphogenesis during puberty, whereas bipotent MaSCs coordinate ductal homeostasis and remodelling of the mouse adult gland.",
author = "Rios, {Anne C.} and Fu, {Nai Yang} and Lindeman, {Geoffrey J.} and Visvader, {Jane E.}",
note = "Funding Information: Acknowledgements We are grateful to F. Jackling and K. Liu for genotyping, F. Vaillant for performing transplants, C. Nowell and K. Roger in the WEHI Imaging Facility for expert support, S. Firth at Monash MicroImaging, Leica and Zeiss for imaging support, D. Sieiro Mosti for help with quantification, J. Stanley for generation of transgenic strains, and the Animal, FACS and Histology facilities at WEHI. We also thank J. Adams for review of the manuscript, and H. Clevers, P. Chambon, M. Furtado, B. Hogan and M. Shen for the provision of mouse strains. This work was supported by the Australian National Health and Medical Research Council (NHMRC); the Victorian State Government through VCA funding of the Victorian Breast Cancer Research Consortium and Operational Infrastructure Support; the Australian Cancer Research Foundation; and the Qualtrough Family Bequest. A.C.R. and N.Y.F. were supported by a National Breast Cancer Foundation/Cure Cancer Australia Fellowship, G.J.L. by a NHMRC Research Fellowship and J.E.V. by an Australia Fellowship.",
year = "2014",
doi = "10.1038/nature12948",
language = "English",
volume = "506",
pages = "322--327",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7488",
}