TY - JOUR
T1 - Intracellular and extracellular domains of protein tyrosine phosphatase PTPRZ-B differentially regulate glioma cell growth and motility
AU - Bourgonje, Annika M.
AU - Navis, Anna C.
AU - Schepens, Jan T.G.
AU - Verrijp, Kiek
AU - Hovestad, Liesbeth
AU - Hilhorst, Riet
AU - Harroch, Sheila
AU - Wesseling, Pieter
AU - Leenders, William P.J.
AU - Hendriks, Wiljan J.A.J.
PY - 2014
Y1 - 2014
N2 - Gliomas are primary brain tumors for which surgical resection and radiotherapy is difficult because of the diffuse infiltrative growth of the tumor into the brain parenchyma. For development of alternative, drug-based, therapies more insight in the molecular processes that steer this typical growth and morphodynamic behavior of glioma cells is needed. Protein tyrosine phosphatase PTPRZ-B is a transmembrane signaling molecule that is found to be strongly up-regulated in glioma specimens. We assessed the contribution of PTPRZ-B protein domains to tumor cell growth and migration, via lentiviral knock-down and over-expression using clinically relevant glioma xenografts and their derived cell models. PTPRZ-B knock-down resulted in reduced migration and proliferation of glioma cells in vitro and also inhibited tumor growth in vivo. Interestingly, expression of only the PTPRZ-B extracellular segment was sufficient to rescue the in vitro migratory phenotype that resulted from PTPRZ-B knock-down. In contrast, PTPRZ-B knock-down effects on proliferation could be reverted only after re-expression of PTPRZ-B variants that contained its C-terminal PDZ binding domain. Thus, distinct domains of PTPRZ-B are differentially required for migration and proliferation of glioma cells, respectively. PTPRZ-B signaling pathways therefore represent attractive therapeutic entry points to combat these tumors.
AB - Gliomas are primary brain tumors for which surgical resection and radiotherapy is difficult because of the diffuse infiltrative growth of the tumor into the brain parenchyma. For development of alternative, drug-based, therapies more insight in the molecular processes that steer this typical growth and morphodynamic behavior of glioma cells is needed. Protein tyrosine phosphatase PTPRZ-B is a transmembrane signaling molecule that is found to be strongly up-regulated in glioma specimens. We assessed the contribution of PTPRZ-B protein domains to tumor cell growth and migration, via lentiviral knock-down and over-expression using clinically relevant glioma xenografts and their derived cell models. PTPRZ-B knock-down resulted in reduced migration and proliferation of glioma cells in vitro and also inhibited tumor growth in vivo. Interestingly, expression of only the PTPRZ-B extracellular segment was sufficient to rescue the in vitro migratory phenotype that resulted from PTPRZ-B knock-down. In contrast, PTPRZ-B knock-down effects on proliferation could be reverted only after re-expression of PTPRZ-B variants that contained its C-terminal PDZ binding domain. Thus, distinct domains of PTPRZ-B are differentially required for migration and proliferation of glioma cells, respectively. PTPRZ-B signaling pathways therefore represent attractive therapeutic entry points to combat these tumors.
KW - Cell migration
KW - Diffuse infiltrative growth
KW - PDZ
KW - PTPRZ1
KW - Signal transduction
KW - Tyrosine phosphorylation
UR - http://www.scopus.com/inward/record.url?scp=84908006506&partnerID=8YFLogxK
U2 - 10.18632/oncotarget.2366
DO - 10.18632/oncotarget.2366
M3 - Article
C2 - 25238264
AN - SCOPUS:84908006506
SN - 1949-2553
VL - 5
SP - 8690
EP - 8702
JO - Oncotarget
JF - Oncotarget
IS - 18
ER -