Microarray data analysis: A hierarchical t-test to handle heteroscedasticity

Renée X. De Menezes, Judith M. Boer, Hans C. Van Houwelingen

Onderzoeksoutput: Bijdrage aan tijdschriftArtikelpeer review

15 Citaten (Scopus)

Samenvatting

The analysis of differential gene expression in microarray experiments requires the development of adequate statistical tools. This article describes a simple statistical method for detecting differential expression between two conditions with a low number of replicates. When comparing two group means using a traditional t-test, gene-specific variance estimates are unstable and can lead to wrong conclusions. We construct a likelihood ratio test while modelling these variances hierarchically across all genes, and express it as a t-test statistic. By borrowing information across genes we can take advantage of their large numbers, and still yield a gene-specific test statistic. We show that this hierarchical t-test is more powerful than its traditional version and generates less false positives in a simulation study, especially with small sample sizes. This approach can be extended to cases where there are more than two groups.

Originele taal-2Engels
Pagina's (van-tot)229-235
Aantal pagina's7
TijdschriftApplied Bioinformatics
Volume3
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - 2004
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Microarray data analysis: A hierarchical t-test to handle heteroscedasticity'. Samen vormen ze een unieke vingerafdruk.

Citeer dit