TY - JOUR
T1 - Paroxysmal nocturnal hemoglobinuria in children
AU - Van Den Heuvel-Eibrink, Marry M.
PY - 2007
Y1 - 2007
N2 - Paroxysmal nocturnal hemoglobinuria (PNH), an acquired hematologic disorder characterized by intravascular hemolysis, nocturnal hemoglobinuria, thrombotic events, serious infections, and bone marrow failure, is very rare in children. PNH is caused by a somatic mutation of the phosphatidylinositol glycan (GPI) complementation class A (PIGA) gene, followed by a survival advantage of the PNH clone, which results in a deficiency of GPI-anchored proteins on hematopoietic cells. Currently, immunophenotypic GPI-linked anchor protein analysis has replaced the acid Ham and sucrose lysis test, as it provides a reliable diagnostic tool for this disease. The presence of PNH clones should be considered in every child with an acquired bone marrow failure syndrome, for example (hypoplastic) myelodysplastic syndrome and aplastic anemia, and/or unexpected serious thrombosis. Treatment of PNH in children is dependent on the clinical presentation. In cases of severe bone marrow failure, stem cell transplantation should be seriously considered as a therapeutic option even if no matched sibling donor is available. This article reviews the reported cases of PNH in children using the recently published guidelines for classification, diagnostics, and treatment.
AB - Paroxysmal nocturnal hemoglobinuria (PNH), an acquired hematologic disorder characterized by intravascular hemolysis, nocturnal hemoglobinuria, thrombotic events, serious infections, and bone marrow failure, is very rare in children. PNH is caused by a somatic mutation of the phosphatidylinositol glycan (GPI) complementation class A (PIGA) gene, followed by a survival advantage of the PNH clone, which results in a deficiency of GPI-anchored proteins on hematopoietic cells. Currently, immunophenotypic GPI-linked anchor protein analysis has replaced the acid Ham and sucrose lysis test, as it provides a reliable diagnostic tool for this disease. The presence of PNH clones should be considered in every child with an acquired bone marrow failure syndrome, for example (hypoplastic) myelodysplastic syndrome and aplastic anemia, and/or unexpected serious thrombosis. Treatment of PNH in children is dependent on the clinical presentation. In cases of severe bone marrow failure, stem cell transplantation should be seriously considered as a therapeutic option even if no matched sibling donor is available. This article reviews the reported cases of PNH in children using the recently published guidelines for classification, diagnostics, and treatment.
UR - http://www.scopus.com/inward/record.url?scp=33847051597&partnerID=8YFLogxK
U2 - 10.2165/00148581-200709010-00002
DO - 10.2165/00148581-200709010-00002
M3 - Review article
C2 - 17291133
AN - SCOPUS:33847051597
SN - 1174-5878
VL - 9
SP - 11
EP - 16
JO - Pediatric Drugs
JF - Pediatric Drugs
IS - 1
ER -