Predicting stimulation-dependent enhancer-promoter interactions fromv ChIP-Seq time course data

Tomasz Dzida, Mudassar Iqbal, Iryna Charapitsa, George Reid, Henk Stunnenberg, Filomena Matarese, Korbinian Grote, Antti Honkela, Magnus Rattray

Onderzoeksoutput: Bijdrage aan tijdschriftArtikelpeer review

8 Citaten (Scopus)

Samenvatting

We have developed a machine learning approach to predict stimulation-dependent enhancer-promoter interactions using evidence from changes in genomic protein occupancy over time. The occupancy of estrogen receptor alpha (ERα), RNA poly- merase (Pol II) and histone marks H2AZ and H3K4me3 were measured over time using ChIP-Seq experiments in MCF7 cells stimulated with estrogen. A Bayesian classifier was developed which uses the correlation of temporal binding patterns at enhancers and promoters and genomic proximity as features to predict interactions. This method was trained using experimentally determined interactions from the same system and was shown to achieve much higher precision than predictions based on the genomic proximity of nearest ERα binding. We use the method to identify a genome-wide confident set of ERα target genes and their regulatory enhancers genome- wide. Validation with publicly available GRO-Seq data demonstrates that our predicted targets are much more likely to show early nascent transcription than predictions based on genomic ERα binding proximity alone.

Originele taal-2Engels
Artikelnummere3742
TijdschriftPeerJ
Volume2017
Nummer van het tijdschrift9
DOI's
StatusGepubliceerd - 2017
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Predicting stimulation-dependent enhancer-promoter interactions fromv ChIP-Seq time course data'. Samen vormen ze een unieke vingerafdruk.

Citeer dit