TY - JOUR
T1 - Prolonged antigen storage endows merocytic dendritic cells with enhanced capacity to prime anti-tumor responses in tumor-bearing mice
AU - Reboulet, Rachel A.
AU - Hennies, Cassandra M.
AU - Garcia, Zacarias
AU - Nierkens, Stefan
AU - Janssen, Edith M.
PY - 2010/9/15
Y1 - 2010/9/15
N2 - Tumor cell vaccination with irradiated autologous tumor cells is a promising approach to activate tumor-specific T cell responses without the need for tumor Ag identification. However, uptake of dying cells by dendritic cells (DCs) is generally a noninflammatory or tolerizing event to prevent the development of autoreactive immune responses. In this study, we describe the mechanisms that confer the potent T cell priming capacity of a recently identified a population of DCs (merocytic DCs [mcDCs]) that potently primes both CD8+ and CD4+ T cells to cell-associated Ags upon uptake of apoptotic cells. mcDCs acquired cell-associated materials through a process of merocytosis that is defined by the uptake of small particles that are stored in nonacidic compartments for prolonged periods, sustained Ag presentation, and the induction of type I IFN. T cells primed by mcDCs to cell-associated Ags exhibit increased primary expansion, enhanced effector function, and increased memory formation. By using transgenic T cell transfer models and endogenous models, we show that treatment of tumor-bearing mice with mcDCs that have been exposed to dying tumor cells results in tumor suppression and increased host survival through the activation of naive tumor-specific CD8+ T cells as well as the reinvigoration of tumor-specific T cells that had been rendered nonresponsive by the tumor in vivo. The potent capacity of mcDCs to prime both CD4+ and CD8+ T cells to cell-associated Ags under immunosuppressive conditions makes this DC subset an attractive target for tumor therapies as well as interventional strategies for autoimmunity and transplantation.
AB - Tumor cell vaccination with irradiated autologous tumor cells is a promising approach to activate tumor-specific T cell responses without the need for tumor Ag identification. However, uptake of dying cells by dendritic cells (DCs) is generally a noninflammatory or tolerizing event to prevent the development of autoreactive immune responses. In this study, we describe the mechanisms that confer the potent T cell priming capacity of a recently identified a population of DCs (merocytic DCs [mcDCs]) that potently primes both CD8+ and CD4+ T cells to cell-associated Ags upon uptake of apoptotic cells. mcDCs acquired cell-associated materials through a process of merocytosis that is defined by the uptake of small particles that are stored in nonacidic compartments for prolonged periods, sustained Ag presentation, and the induction of type I IFN. T cells primed by mcDCs to cell-associated Ags exhibit increased primary expansion, enhanced effector function, and increased memory formation. By using transgenic T cell transfer models and endogenous models, we show that treatment of tumor-bearing mice with mcDCs that have been exposed to dying tumor cells results in tumor suppression and increased host survival through the activation of naive tumor-specific CD8+ T cells as well as the reinvigoration of tumor-specific T cells that had been rendered nonresponsive by the tumor in vivo. The potent capacity of mcDCs to prime both CD4+ and CD8+ T cells to cell-associated Ags under immunosuppressive conditions makes this DC subset an attractive target for tumor therapies as well as interventional strategies for autoimmunity and transplantation.
UR - http://www.scopus.com/inward/record.url?scp=78649890647&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1001619
DO - 10.4049/jimmunol.1001619
M3 - Article
C2 - 20720209
AN - SCOPUS:78649890647
SN - 0022-1767
VL - 185
SP - 3337
EP - 3347
JO - Journal of Immunology
JF - Journal of Immunology
IS - 6
ER -