TY - JOUR
T1 - Quality Control of Busulfan Plasma Quantitation, Modeling, and Dosing
T2 - An Interlaboratory Proficiency Testing Program
AU - McCune, Jeannine S.
AU - Punt, Arjen M.
AU - Yeh, Rosa F.
AU - Dupuis, L. Lee
AU - Kweekel, Dina M.
AU - Franssen, Eric J.F.
AU - Ritchie, James C.
AU - van Maarseveen, Erik
AU - Huitema, Alwin D.R.
N1 - Publisher Copyright:
Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.
PY - 2021/10/1
Y1 - 2021/10/1
N2 - BACKGROUND: Personalizing busulfan doses to target a narrow plasma exposure has improved the efficacy and lowered the toxicity of busulfan-based conditioning regimens used in hematopoietic cell transplant. Regional regulations guide interlaboratory proficiency testing for busulfan concentration quantification and monitoring. To date, there have been no comparisons of the busulfan pharmacokinetic modeling and dose recommendation protocols used in these laboratories. Here, in collaboration with the Dutch Association for Quality Assessment in Therapeutic Drug Monitoring and Clinical Toxicology, a novel interlaboratory proficiency program for the quantitation in plasma, pharmacokinetic modeling, and dosing of busulfan was designed. The methods and results of the first 2 rounds of this proficiency testing are described herein. METHODS: A novel method was developed to stabilize busulfan in N,N-dimethylacetamide, which allowed shipping of the proficiency samples without dry ice. In each round, participating laboratories reported their results for 2 proficiency samples (one low and one high busulfan concentrations) and a theoretical case assessing their pharmacokinetic modeling and dose recommendations. All participants were blinded to the answers; descriptive statistics were used to evaluate their overall performance. The guidelines suggested that answers within ±15% for busulfan concentrations and ±10% for busulfan plasma exposure and dose recommendation were to be considered accurate. RESULTS: Of the 4 proficiency samples evaluated, between 67% and 85% of the busulfan quantitation results were accurate (ie, within 85%-115% of the reference value). The majority (88% round #1; 71% round #2) of the dose recommendation answers were correct. CONCLUSIONS: A proficiency testing program by which laboratories are alerted to inaccuracies in their quantitation, pharmacokinetic modeling, and dose recommendations for busulfan in hematopoietic cell transplant recipients was developed. These rounds of proficiency testing suggests that additional educational efforts and proficiency rounds are needed to ensure appropriate busulfan dosing.
AB - BACKGROUND: Personalizing busulfan doses to target a narrow plasma exposure has improved the efficacy and lowered the toxicity of busulfan-based conditioning regimens used in hematopoietic cell transplant. Regional regulations guide interlaboratory proficiency testing for busulfan concentration quantification and monitoring. To date, there have been no comparisons of the busulfan pharmacokinetic modeling and dose recommendation protocols used in these laboratories. Here, in collaboration with the Dutch Association for Quality Assessment in Therapeutic Drug Monitoring and Clinical Toxicology, a novel interlaboratory proficiency program for the quantitation in plasma, pharmacokinetic modeling, and dosing of busulfan was designed. The methods and results of the first 2 rounds of this proficiency testing are described herein. METHODS: A novel method was developed to stabilize busulfan in N,N-dimethylacetamide, which allowed shipping of the proficiency samples without dry ice. In each round, participating laboratories reported their results for 2 proficiency samples (one low and one high busulfan concentrations) and a theoretical case assessing their pharmacokinetic modeling and dose recommendations. All participants were blinded to the answers; descriptive statistics were used to evaluate their overall performance. The guidelines suggested that answers within ±15% for busulfan concentrations and ±10% for busulfan plasma exposure and dose recommendation were to be considered accurate. RESULTS: Of the 4 proficiency samples evaluated, between 67% and 85% of the busulfan quantitation results were accurate (ie, within 85%-115% of the reference value). The majority (88% round #1; 71% round #2) of the dose recommendation answers were correct. CONCLUSIONS: A proficiency testing program by which laboratories are alerted to inaccuracies in their quantitation, pharmacokinetic modeling, and dose recommendations for busulfan in hematopoietic cell transplant recipients was developed. These rounds of proficiency testing suggests that additional educational efforts and proficiency rounds are needed to ensure appropriate busulfan dosing.
UR - http://www.scopus.com/inward/record.url?scp=85116957276&partnerID=8YFLogxK
U2 - 10.1097/FTD.0000000000000862
DO - 10.1097/FTD.0000000000000862
M3 - Article
C2 - 33675302
AN - SCOPUS:85116957276
SN - 0163-4356
VL - 43
SP - 657
EP - 663
JO - Therapeutic Drug Monitoring
JF - Therapeutic Drug Monitoring
IS - 5
ER -