TY - JOUR
T1 - Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1-/- mice
AU - Prasher, Joanna M.
AU - Lalai, Astrid S.
AU - Heijmans-Antonissen, Claudia
AU - Ploemacher, Robert E.
AU - Hoeijmakers, Jan H.J.
AU - Touw, Ivo P.
AU - Niedernhofer, Laura J.
PY - 2005/2/23
Y1 - 2005/2/23
N2 - The ERCC1-XPF heterodimer is a structure-specific endonuclease involved in both nucleotide excision repair and interstrand crosslink repair. Mice carrying a genetic defect in Ercc1 display symptoms suggestive of a progressive, segmental progeria, indicating that disruption of one or both of these DNA damage repair pathways accelerates aging. In the hematopoietic system, there are defined age-associated changes for which the cause is unknown. To determine if DNA repair is critical to prolonged hematopoietic function, hematopoiesis in Ercc1-/- mice was compared to that in young and old wild-type mice. Ercc1-/- mice (3-week-old) exhibited multilineage cytopenia and fatty replacement of bone marrow, similar to old wild-type mice. In addition, the proliferative reserves of hematopoietic progenitors and stress erythropoiesis were significantly reduced in Ercc1-/- mice compared to age-matched controls. These features were not seen in nucleotide excision repair-deficient Xpa-/- mice, but are characteristic of Fanconi anemia, a human cancer syndrome caused by defects in interstrand crosslink repair. These data support the hypothesis that spontaneous interstrand crosslink damage contributes to the functional decline of the hematopoietic system associated with aging.
AB - The ERCC1-XPF heterodimer is a structure-specific endonuclease involved in both nucleotide excision repair and interstrand crosslink repair. Mice carrying a genetic defect in Ercc1 display symptoms suggestive of a progressive, segmental progeria, indicating that disruption of one or both of these DNA damage repair pathways accelerates aging. In the hematopoietic system, there are defined age-associated changes for which the cause is unknown. To determine if DNA repair is critical to prolonged hematopoietic function, hematopoiesis in Ercc1-/- mice was compared to that in young and old wild-type mice. Ercc1-/- mice (3-week-old) exhibited multilineage cytopenia and fatty replacement of bone marrow, similar to old wild-type mice. In addition, the proliferative reserves of hematopoietic progenitors and stress erythropoiesis were significantly reduced in Ercc1-/- mice compared to age-matched controls. These features were not seen in nucleotide excision repair-deficient Xpa-/- mice, but are characteristic of Fanconi anemia, a human cancer syndrome caused by defects in interstrand crosslink repair. These data support the hypothesis that spontaneous interstrand crosslink damage contributes to the functional decline of the hematopoietic system associated with aging.
KW - Fanconi anemia
KW - Hematopoietic progenitors
KW - Nucleotide excision repair
KW - Progeria
KW - Senescence
UR - http://www.scopus.com/inward/record.url?scp=15444370725&partnerID=8YFLogxK
U2 - 10.1038/sj.emboj.7600542
DO - 10.1038/sj.emboj.7600542
M3 - Article
C2 - 15692571
AN - SCOPUS:15444370725
SN - 0261-4189
VL - 24
SP - 861
EP - 871
JO - EMBO Journal
JF - EMBO Journal
IS - 4
ER -