TY - JOUR
T1 - SMARCA5 interacts with NUP98-NSD1 oncofusion protein and sustains hematopoietic cells transformation
AU - Jevtic, Zivojin
AU - Matafora, Vittoria
AU - Casagrande, Francesca
AU - Santoro, Fabio
AU - Minucci, Saverio
AU - Garre', Massimilliano
AU - Rasouli, Milad
AU - Heidenreich, Olaf
AU - Musco, Giovanna
AU - Schwaller, Jürg
AU - Bachi, Angela
N1 - Funding Information:
We thank IFOM Functional Proteomics group and Proteomics facility for critical comments and suggestions. We thank IFOM Imaging technological development unit for their assistance in immunofluorescence imaging and sorting (Maria Grazia Totaro and Sara Martone) experiments. We thank Fabio Iannelli and Federica Zanardi from IFOM Bioinformatics unit for their precious help with data analysis. We thank Professor Juri Rappsilber (TU Berlin) for comments and suggestions regarding AP-MS experiments. We thank Professor Diego Pasini (IEO, Milan) for insightful discussions. We thank Professor Aniruddha Deshpande (Sanford Burnham Prebys Medical Discovery Institute, San Diego) for FLAG-NUP98-NSD1 construct. We thank Professor Yogen Saunthararajah from Cleveland Hospital for providing ED2-AD101. We thank Professor Robert Slany (University Erlangen-Nürnber) for precious discussion. We thank Sabine Juge-Ehret and Federica Valigi from Childhood Leukemia group in Basel for help with primary murine hematopoietic progenitors.
Funding Information:
This work was supported by the Italian Ministry of Health (RF-2013-02354880) and AIRC IG 18607. The work in the laboratory of J.S. was supported by SWISS CANCER RESEARCH (KFS-4258-08-2017).
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - BACKGROUND: Acute myeloid leukemia (AML) is characterized by accumulation of aberrantly differentiated hematopoietic myeloid progenitor cells. The karyotyping-silent NUP98-NSD1 fusion is a molecular hallmark of pediatric AML and is associated with the activating FLT3-ITD mutation in > 70% of the cases. NUP98-NSD1 fusion protein promotes myeloid progenitor self-renewal in mice via unknown molecular mechanism requiring both the NUP98 and the NSD1 moieties.METHODS: We used affinity purification coupled to label-free mass spectrometry (AP-MS) to examine the effect of NUP98-NSD1 structural domain deletions on nuclear interactome binding. We determined their functional relevance in NUP98-NSD1 immortalized primary murine hematopoietic stem and progenitor cells (HSPC) by inducible knockdown, pharmacological targeting, methylcellulose assay, RT-qPCR analysis and/or proximity ligation assays (PLA). Fluorescence recovery after photobleaching and b-isoxazole assay were performed to examine the phase transition capacity of NUP98-NSD1 in vitro and in vivo.RESULTS: We show that NUP98-NSD1 core interactome binding is largely dependent on the NUP98 phenylalanine-glycine (FG) repeat domains which mediate formation of liquid-like phase-separated NUP98-NSD1 nuclear condensates. We identified condensate constituents including imitation switch (ISWI) family member SMARCA5 and BPTF (bromodomain PHD finger transcription factor), both members of the nucleosome remodeling factor complex (NURF). We validated the interaction with SMARCA5 in NUP98-NSD1+ patient cells and demonstrated its functional role in NUP98-NSD1/FLT3-ITD immortalized primary murine hematopoietic cells by genetic and pharmacological targeting. Notably, SMARCA5 inhibition did not affect NUP98-NSD1 condensates suggesting that functional activity rather than condensate formation per se is crucial to maintain the transformed phenotype.CONCLUSIONS: NUP98-NSD1 interacts and colocalizes on the genome with SMARCA5 which is an essential mediator of the NUP98-NSD1 transformation in hematopoietic cells. Formation of NUP98-NSD1 phase-separated nuclear condensates is not sufficient for the maintenance of transformed phenotype, which suggests that selective targeting of condensate constituents might represent a new therapeutic strategy for NUP98-NSD1 driven AML.
AB - BACKGROUND: Acute myeloid leukemia (AML) is characterized by accumulation of aberrantly differentiated hematopoietic myeloid progenitor cells. The karyotyping-silent NUP98-NSD1 fusion is a molecular hallmark of pediatric AML and is associated with the activating FLT3-ITD mutation in > 70% of the cases. NUP98-NSD1 fusion protein promotes myeloid progenitor self-renewal in mice via unknown molecular mechanism requiring both the NUP98 and the NSD1 moieties.METHODS: We used affinity purification coupled to label-free mass spectrometry (AP-MS) to examine the effect of NUP98-NSD1 structural domain deletions on nuclear interactome binding. We determined their functional relevance in NUP98-NSD1 immortalized primary murine hematopoietic stem and progenitor cells (HSPC) by inducible knockdown, pharmacological targeting, methylcellulose assay, RT-qPCR analysis and/or proximity ligation assays (PLA). Fluorescence recovery after photobleaching and b-isoxazole assay were performed to examine the phase transition capacity of NUP98-NSD1 in vitro and in vivo.RESULTS: We show that NUP98-NSD1 core interactome binding is largely dependent on the NUP98 phenylalanine-glycine (FG) repeat domains which mediate formation of liquid-like phase-separated NUP98-NSD1 nuclear condensates. We identified condensate constituents including imitation switch (ISWI) family member SMARCA5 and BPTF (bromodomain PHD finger transcription factor), both members of the nucleosome remodeling factor complex (NURF). We validated the interaction with SMARCA5 in NUP98-NSD1+ patient cells and demonstrated its functional role in NUP98-NSD1/FLT3-ITD immortalized primary murine hematopoietic cells by genetic and pharmacological targeting. Notably, SMARCA5 inhibition did not affect NUP98-NSD1 condensates suggesting that functional activity rather than condensate formation per se is crucial to maintain the transformed phenotype.CONCLUSIONS: NUP98-NSD1 interacts and colocalizes on the genome with SMARCA5 which is an essential mediator of the NUP98-NSD1 transformation in hematopoietic cells. Formation of NUP98-NSD1 phase-separated nuclear condensates is not sufficient for the maintenance of transformed phenotype, which suggests that selective targeting of condensate constituents might represent a new therapeutic strategy for NUP98-NSD1 driven AML.
KW - Acute myeloid leukemia
KW - Interactomics
KW - NUP98-NSD1
KW - Phase-separation
KW - SMARCA5
UR - http://www.scopus.com/inward/record.url?scp=85123502410&partnerID=8YFLogxK
U2 - 10.1186/s13046-022-02248-x
DO - 10.1186/s13046-022-02248-x
M3 - Article
C2 - 35073946
SN - 0392-9078
VL - 41
SP - 34
JO - Journal of experimental & clinical cancer research : CR
JF - Journal of experimental & clinical cancer research : CR
IS - 1
M1 - 34
ER -