TY - JOUR
T1 - Substantial decreases in the number and diversity of microbiota during chemotherapy-induced gastrointestinal mucositis in a rat model
AU - Fijlstra, Margot
AU - Ferdous, Mithila
AU - Koning, Anne M
AU - Rings, Edmond H H M
AU - Harmsen, Hermie J M
AU - Tissing, Wim J E
PY - 2015/6
Y1 - 2015/6
N2 - PURPOSE: Earlier, we showed in acute myeloid leukemia (AML) patients that the microbiota changes dramatically during anticancer treatment, coinciding with gastrointestinal mucositis: The commensal anaerobic populations reduce in favor of potential pathogens. Therefore, interventions targeting the microbiota during mucositis might be interesting but can better be tested in animals than in vulnerable mucositis patients. Here, we aimed to study the potential microbial changes during methotrexate (MTX)-induced gastrointestinal mucositis in a well-established rat model and to study whether this model can be used for future microbial intervention studies.METHODS: After injection with MTX or saline (day 0), rats were sacrificed between days 2 and 11. Plasma citrulline level, jejunal histology, and the number and diversity of intestinal bacteria in feces (using fluorescence in situ hybridization (FISH)) were determined.RESULTS: Mucositis was most severe on day 4 when food intake, plasma citrulline, and villus length were the lowest, compared with controls (P < 0.0125). At the same time, MTX-treated rats showed an overall decrease (705-fold) in most bacteria (using a universal probe), compared with controls (P < 0.125). Reduced bacterial presence was related with the presence of diarrhea and a reduced villus length (rho = 0.38, P < 0.05). At day 4, there was an absolute and relative decrease of anaerobes (13-fold and -58 %, respectively) and streptococci (296-fold and -1 %, respectively) but a relative increase of Bacteroides (+49 %), compared with controls (P < 0.125).CONCLUSIONS: In the mucositis rat model, we found substantial decreases in the number and diversity of microbiota, resembling earlier findings in humans. The model therefore seems well suited to study the effects of different microbial interventions on mucositis, prior to performing human studies.
AB - PURPOSE: Earlier, we showed in acute myeloid leukemia (AML) patients that the microbiota changes dramatically during anticancer treatment, coinciding with gastrointestinal mucositis: The commensal anaerobic populations reduce in favor of potential pathogens. Therefore, interventions targeting the microbiota during mucositis might be interesting but can better be tested in animals than in vulnerable mucositis patients. Here, we aimed to study the potential microbial changes during methotrexate (MTX)-induced gastrointestinal mucositis in a well-established rat model and to study whether this model can be used for future microbial intervention studies.METHODS: After injection with MTX or saline (day 0), rats were sacrificed between days 2 and 11. Plasma citrulline level, jejunal histology, and the number and diversity of intestinal bacteria in feces (using fluorescence in situ hybridization (FISH)) were determined.RESULTS: Mucositis was most severe on day 4 when food intake, plasma citrulline, and villus length were the lowest, compared with controls (P < 0.0125). At the same time, MTX-treated rats showed an overall decrease (705-fold) in most bacteria (using a universal probe), compared with controls (P < 0.125). Reduced bacterial presence was related with the presence of diarrhea and a reduced villus length (rho = 0.38, P < 0.05). At day 4, there was an absolute and relative decrease of anaerobes (13-fold and -58 %, respectively) and streptococci (296-fold and -1 %, respectively) but a relative increase of Bacteroides (+49 %), compared with controls (P < 0.125).CONCLUSIONS: In the mucositis rat model, we found substantial decreases in the number and diversity of microbiota, resembling earlier findings in humans. The model therefore seems well suited to study the effects of different microbial interventions on mucositis, prior to performing human studies.
KW - Animals
KW - Citrulline/blood
KW - In Situ Hybridization, Fluorescence
KW - Intestinal Mucosa/drug effects
KW - Male
KW - Methotrexate/adverse effects
KW - Microbiota/drug effects
KW - Mucositis/blood
KW - Random Allocation
KW - Rats
KW - Rats, Wistar
U2 - 10.1007/s00520-014-2487-6
DO - 10.1007/s00520-014-2487-6
M3 - Article
C2 - 25376667
SN - 1433-7339
VL - 23
SP - 1513
EP - 1522
JO - Supportive Care in Cancer
JF - Supportive Care in Cancer
IS - 6
ER -