TY - JOUR
T1 - TAP-inhibiting proteins US6, ICP47 and UL49.5 differentially affect minor and major histocompatibility antigen-specific recognition by cytotoxic T lymphocytes
AU - Oosten, Liesbeth E.M.
AU - Koppers-Lalic, Danijela
AU - Blokland, Els
AU - Mulder, Arend
AU - Ressing, Maaike E.
AU - Mutis, Tuna
AU - van Halteren, Astrid G.S.
AU - Wiertz, Emmanuel J.H.J.
AU - Goulmy, Els
PY - 2007/9
Y1 - 2007/9
N2 - CTLs specific for hematopoietic system-restricted minor histocompatibility antigens (mHags) can serve as reagents for cellular adoptive immunotherapy after allogeneic stem cell transplantation (SCT). In the HLA-mismatched setting, CTLs specific for hematopoietic system-restricted mHags expressed solely by the non-self 'allo' HLA molecules could be used to treat relapse after HLA-mismatched SCT. The generation of mHag-specific allo-HLA-restricted CTLs requires antigen-presenting cells (APCs) expressing low numbers of endogenous peptides to avoid co-induction of undesired allo-HLA reactivities. In this study, we exploited viral evasion strategies to generate APCs expressing a controlled set of endogenous peptides. Herpesviruses persist lifelong following primary infection due to expression of viral gene products that hamper T-cell recognition of infected cells. The herpesvirus-derived proteins US6, ICP47 and UL49.5 down-regulate endogenous antigen presentation in human APCs via inhibition of the transporter associated with antigen processing. EBV-transformed B cell lines transduced with retroviral vectors encoding US6, ICP47 or UL49.5 exhibited a stable decrease in cell-surface HLA class I expression and were protected from lysis by mHag-specific CTLs. Exogenous addition of mHag peptide fully restored target cell recognition. UL49.5 showed the most pronounced inhibitory effect, reducing HLA class I expression and mHag-specific lysis up to 99%. UL49.5 also significantly diminished allo-HLA reactivities mediated by allo-HLA-specific CTLs. In conclusion, UL49.5 could be a powerful new tool to study and modulate endogenous antigen presentation.
AB - CTLs specific for hematopoietic system-restricted minor histocompatibility antigens (mHags) can serve as reagents for cellular adoptive immunotherapy after allogeneic stem cell transplantation (SCT). In the HLA-mismatched setting, CTLs specific for hematopoietic system-restricted mHags expressed solely by the non-self 'allo' HLA molecules could be used to treat relapse after HLA-mismatched SCT. The generation of mHag-specific allo-HLA-restricted CTLs requires antigen-presenting cells (APCs) expressing low numbers of endogenous peptides to avoid co-induction of undesired allo-HLA reactivities. In this study, we exploited viral evasion strategies to generate APCs expressing a controlled set of endogenous peptides. Herpesviruses persist lifelong following primary infection due to expression of viral gene products that hamper T-cell recognition of infected cells. The herpesvirus-derived proteins US6, ICP47 and UL49.5 down-regulate endogenous antigen presentation in human APCs via inhibition of the transporter associated with antigen processing. EBV-transformed B cell lines transduced with retroviral vectors encoding US6, ICP47 or UL49.5 exhibited a stable decrease in cell-surface HLA class I expression and were protected from lysis by mHag-specific CTLs. Exogenous addition of mHag peptide fully restored target cell recognition. UL49.5 showed the most pronounced inhibitory effect, reducing HLA class I expression and mHag-specific lysis up to 99%. UL49.5 also significantly diminished allo-HLA reactivities mediated by allo-HLA-specific CTLs. In conclusion, UL49.5 could be a powerful new tool to study and modulate endogenous antigen presentation.
KW - Antigen presentation/processing
KW - Cytotoxicity
KW - Recombinant viral vectors
UR - http://www.scopus.com/inward/record.url?scp=34548757193&partnerID=8YFLogxK
U2 - 10.1093/intimm/dxm082
DO - 10.1093/intimm/dxm082
M3 - Article
C2 - 17855435
AN - SCOPUS:34548757193
SN - 0953-8178
VL - 19
SP - 1115
EP - 1122
JO - International Immunology
JF - International Immunology
IS - 9
ER -