TY - JOUR
T1 - Tobacco smoking is associated with DNA methylation of diabetes susceptibility genes
AU - BIOS Consortium
AU - Ligthart, Symen
AU - Steenaard, Rebecca V.
AU - Peters, Marjolein J.
AU - van Meurs, Joyce B.J.
AU - Sijbrands, Eric J.G.
AU - Uitterlinden, André G.
AU - Bonder, Marc Jan
AU - Hofman, Albert
AU - Franco, Oscar H.
AU - Dehghan, Abbas
AU - Heijmans, Bastiaan T.
AU - ’t Hoen, Peter A.C.
AU - van Meurs, Joyce
AU - Isaacs, Aaron
AU - Jansen, Rick
AU - Franke, Lude
AU - Boomsma, Dorret I.
AU - Pool, René
AU - van Dongen, Jenny
AU - Hottenga, Jouke J.
AU - van Greevenbroek, Marleen M.J.
AU - Stehouwer, Coen D.A.
AU - van der Kallen, Carla J.H.
AU - Schalkwijk, Casper G.
AU - Wijmenga, Cisca
AU - Zhernakova, Alexandra
AU - Tigchelaar, Ettje F.
AU - Eline Slagboom, P.
AU - Beekman, Marian
AU - Deelen, Joris
AU - van Heemst, Diana
AU - Veldink, Jan H.
AU - van den Berg, Leonard H.
AU - van Duijn, Cornelia M.
AU - Hofman, Albert
AU - Mila Jhamai, P.
AU - Verbiest, Michael
AU - Eka, H.
AU - Suchiman, D.
AU - Verkerk, Marijn
AU - van der Breggen, Ruud
AU - van Rooij, Jeroen
AU - Lakenberg, Nico
AU - Mei, Hailiang
AU - van Iterson, Maarten
AU - van Galen, Michiel
AU - Bot, Jan
AU - van 't Hof, Peter
AU - Deelen, Patrick
AU - van Dijk, Freerk
N1 - Publisher Copyright:
© 2016, The Author(s).
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Aims/hypothesis: Tobacco smoking, a risk factor for diabetes, is an established modifier of DNA methylation. We hypothesised that tobacco smoking modifies DNA methylation of genes previously identified for diabetes. Methods: We annotated CpG sites available on the Illumina Human Methylation 450K array to diabetes genes previously identified by genome-wide association studies (GWAS), and investigated them for an association with smoking by comparing current to never smokers. The discovery study consisted of 630 individuals (Bonferroni-corrected p = 1.4 × 10−5), and we sought replication in an independent sample of 674 individuals. The replicated sites were tested for association with nearby genetic variants and gene expression and fasting glucose and insulin levels. Results: We annotated 3,620 CpG sites to the genes identified in the GWAS on type 2 diabetes. Comparing current smokers to never smokers, we found 12 differentially methylated CpG sites, of which five replicated: cg23161492 within ANPEP (p = 1.3 × 10−12); cg26963277 (p = 1.2 × 10−9), cg01744331 (p = 8.0 × 10−6) and cg16556677 (p = 1.2 × 10−5) within KCNQ1 and cg03450842 (p = 3.1 × 10−8) within ZMIZ1. The effect of smoking on DNA methylation at the replicated CpG sites attenuated after smoking cessation. Increased DNA methylation at cg23161492 was associated with decreased gene expression levels of ANPEP (p = 8.9 × 10−5). rs231356-T, which was associated with hypomethylation of cg26963277 (KCNQ1), was associated with a higher odds of diabetes (OR 1.06, p = 1.3 × 10−5). Additionally, hypomethylation of cg26963277 was associated with lower fasting insulin levels (p = 0.04). Conclusions/interpretation: Tobacco smoking is associated with differential DNA methylation of the diabetes risk genes ANPEP, KCNQ1 and ZMIZ1. Our study highlights potential biological mechanisms connecting tobacco smoking to excess risk of type 2 diabetes.
AB - Aims/hypothesis: Tobacco smoking, a risk factor for diabetes, is an established modifier of DNA methylation. We hypothesised that tobacco smoking modifies DNA methylation of genes previously identified for diabetes. Methods: We annotated CpG sites available on the Illumina Human Methylation 450K array to diabetes genes previously identified by genome-wide association studies (GWAS), and investigated them for an association with smoking by comparing current to never smokers. The discovery study consisted of 630 individuals (Bonferroni-corrected p = 1.4 × 10−5), and we sought replication in an independent sample of 674 individuals. The replicated sites were tested for association with nearby genetic variants and gene expression and fasting glucose and insulin levels. Results: We annotated 3,620 CpG sites to the genes identified in the GWAS on type 2 diabetes. Comparing current smokers to never smokers, we found 12 differentially methylated CpG sites, of which five replicated: cg23161492 within ANPEP (p = 1.3 × 10−12); cg26963277 (p = 1.2 × 10−9), cg01744331 (p = 8.0 × 10−6) and cg16556677 (p = 1.2 × 10−5) within KCNQ1 and cg03450842 (p = 3.1 × 10−8) within ZMIZ1. The effect of smoking on DNA methylation at the replicated CpG sites attenuated after smoking cessation. Increased DNA methylation at cg23161492 was associated with decreased gene expression levels of ANPEP (p = 8.9 × 10−5). rs231356-T, which was associated with hypomethylation of cg26963277 (KCNQ1), was associated with a higher odds of diabetes (OR 1.06, p = 1.3 × 10−5). Additionally, hypomethylation of cg26963277 was associated with lower fasting insulin levels (p = 0.04). Conclusions/interpretation: Tobacco smoking is associated with differential DNA methylation of the diabetes risk genes ANPEP, KCNQ1 and ZMIZ1. Our study highlights potential biological mechanisms connecting tobacco smoking to excess risk of type 2 diabetes.
KW - DNA methylation
KW - Gene expression
KW - Tobacco smoking
KW - Type 2 diabetes
UR - http://www.scopus.com/inward/record.url?scp=84955590532&partnerID=8YFLogxK
U2 - 10.1007/s00125-016-3872-0
DO - 10.1007/s00125-016-3872-0
M3 - Article
C2 - 26825526
AN - SCOPUS:84955590532
SN - 0012-186X
VL - 59
SP - 998
EP - 1006
JO - Diabetologia
JF - Diabetologia
IS - 5
ER -